Search results

1 – 3 of 3
Article
Publication date: 2 February 2024

Verena Stingl, Lasse Christiansen, Andreas Kornmaaler Hansen, Astrid Heidemann Lassen and Yang Cheng

The introduction of robots as value-adding “workers” on the shop floor triggers complex changes to manufacturing work. Such changes involve highly entangled relationships between…

Abstract

Purpose

The introduction of robots as value-adding “workers” on the shop floor triggers complex changes to manufacturing work. Such changes involve highly entangled relationships between technology, organisation and people. Understanding such entanglements requires a holistic assessment of contemporary robotised manufacturing work, to anticipate the dynamically emerging opportunities and risks of robotised work.

Design/methodology/approach

A systematic literature review of 87 papers was conducted to capture relevant themes of change in robotised manufacturing work. The literature was analysed using a thematic analysis approach, with Checkland’s soft systems thinking as an analytical framework.

Findings

Based on the literature analysis, the authors present a systemic conceptualisation of robotised manufacturing work. Specifically, the conceptualisation highlights four entangled themes of change: work, organisation of labour, workers’ (experiences) and the firm’s environment. Moreover, the authors discuss the complex patterns of interactions between these objects as relationships that defy straightforward cause–effect models.

Practical implications

The findings draw attention to complex interactions between robotisation and manufacturing work. It can, therefore, inform strategic decisions and support projects for robotisation from a holistic perspective.

Originality/value

The authors present a novel approach to studying and designing robotised manufacturing work as a conceptual system. In particular, the paper shifts the focus towards crucial properties of the system, which are subject to complex changes alongside the introduction of robot technology in manufacturing. Soft systems thinking enables new research avenues to explain complex phenomena at the intersection of robotisation and manufacturing work.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Content available
Article
Publication date: 21 November 2023

Josef Schindler, Andreas Kallmuenzer and Marco Valeri

The aim of this paper is to improve the understanding of strategies for how established companies can respond to disruptive innovation, handle increasing complexity, facilitate…

Abstract

Purpose

The aim of this paper is to improve the understanding of strategies for how established companies can respond to disruptive innovation, handle increasing complexity, facilitate entrepreneurial culture and processes and successfully manage organizational ambidexterity.

Design/methodology/approach

A qualitative multiple-case study was conducted to explore successful practices of innovation ambidexterity (IA) and their organizational design, entrepreneurial culture and mindset, processes and leadership. Two internationally established firms that have launched and established IA programs provided deep insight, revealing their strategy and learning on the path toward effective IA.

Findings

The findings show that accepting and managing the inherent complexity increases within an ambidextrous organization strategy is a decisive factor in achieving effective IA. As a result, segmenting small organizational units and granting them extensive autonomy is proposed for managing the complexity of an organization while increasing its effectiveness. Furthermore, it is shown that this helps foster entrepreneurial culture, mindsets and processes as additional mediators for achieving effective IA. Coaching, empowerment and trust were identified as key factors of ambidextrous leadership values that encourage entrepreneurial behavior and decision-making.

Originality/value

To the best of the authors knowledge the first study connecting the research fields of complexity management, organizational ambidexterity theory and entrepreneurial culture while applying the fundamentals of systems theory to propose a practical management framework for successfully responding to disruptive innovation.

1 – 3 of 3