Search results

1 – 2 of 2
Article
Publication date: 15 August 2016

Aljaž Kramberger, Rok Piltaver, Bojan Nemec, Matjaž Gams and Aleš Ude

In this paper, the authors aim to propose a method for learning robotic assembly sequences, where precedence constraints and object relative size and location constraints can be…

Abstract

Purpose

In this paper, the authors aim to propose a method for learning robotic assembly sequences, where precedence constraints and object relative size and location constraints can be learned by demonstration and autonomous robot exploration.

Design/methodology/approach

To successfully plan the operations involved in assembly tasks, the planner needs to know the constraints of the desired task. In this paper, the authors propose a methodology for learning such constraints by demonstration and autonomous exploration. The learning of precedence constraints and object relative size and location constraints, which are needed to construct a planner for automated assembly, were investigated. In the developed system, the learning of symbolic constraints is integrated with low-level control algorithms, which is essential to enable active robot learning.

Findings

The authors demonstrated that the proposed reasoning algorithms can be used to learn previously unknown assembly constraints that are needed to implement a planner for automated assembly. Cranfield benchmark, which is a standardized benchmark for testing algorithms for robot assembly, was used to evaluate the proposed approaches. The authors evaluated the learning performance both in simulation and on a real robot.

Practical implications

The authors' approach reduces the amount of programming that is needed to set up new assembly cells and consequently the overall set up time when new products are introduced into the workcell.

Originality/value

In this paper, the authors propose a new approach for learning assembly constraints based on programming by demonstration and active robot exploration to reduce the computational complexity of the underlying search problems. The authors developed algorithms for success/failure detection of assembly operations based on the comparison of expected signals (forces and torques, positions and orientations of the assembly parts) with the actual signals sensed by a robot. In this manner, all precedence and object size and location constraints can be learned, thereby providing the necessary input for the optimal planning of the entire assembly process.

Details

Industrial Robot: An International Journal, vol. 43 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 October 2014

Fares J. Abu-Dakka, Bojan Nemec, Aljaž Kramberger, Anders Glent Buch, Norbert Krüger and Ales Ude

– The purpose of this paper is to propose a new algorithm based on programming by demonstration and exception strategies to solve assembly tasks such as peg-in-hole.

1125

Abstract

Purpose

The purpose of this paper is to propose a new algorithm based on programming by demonstration and exception strategies to solve assembly tasks such as peg-in-hole.

Design/methodology/approach

Data describing the demonstrated tasks are obtained by kinesthetic guiding. The demonstrated trajectories are transferred to new robot workspaces using three-dimensional (3D) vision. Noise introduced by vision when transferring the task to a new configuration could cause the execution to fail, but such problems are resolved through exception strategies.

Findings

This paper demonstrated that the proposed approach combined with exception strategies outperforms traditional approaches for robot-based assembly. Experimental evaluation was carried out on Cranfield Benchmark, which constitutes a standardized assembly task in robotics. This paper also performed statistical evaluation based on experiments carried out on two different robotic platforms.

Practical implications

The developed framework can have an important impact for robot assembly processes, which are among the most important applications of industrial robots. Our future plans involve implementation of our framework in a commercially available robot controller.

Originality/value

This paper proposes a new approach to the robot assembly based on the Learning by Demonstration (LbD) paradigm. The proposed framework enables to quickly program new assembly tasks without the need for detailed analysis of the geometric and dynamic characteristics of workpieces involved in the assembly task. The algorithm provides an effective disturbance rejection, improved stability and increased overall performance. The proposed exception strategies increase the success rate of the algorithm when the task is transferred to new areas of the workspace, where it is necessary to deal with vision noise and altered dynamic characteristics of the task.

Details

Industrial Robot: An International Journal, vol. 41 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 2 of 2