Search results

1 – 10 of 563
Article
Publication date: 15 August 2016

Aljaž Kramberger, Rok Piltaver, Bojan Nemec, Matjaž Gams and Aleš Ude

In this paper, the authors aim to propose a method for learning robotic assembly sequences, where precedence constraints and object relative size and location constraints can be…

Abstract

Purpose

In this paper, the authors aim to propose a method for learning robotic assembly sequences, where precedence constraints and object relative size and location constraints can be learned by demonstration and autonomous robot exploration.

Design/methodology/approach

To successfully plan the operations involved in assembly tasks, the planner needs to know the constraints of the desired task. In this paper, the authors propose a methodology for learning such constraints by demonstration and autonomous exploration. The learning of precedence constraints and object relative size and location constraints, which are needed to construct a planner for automated assembly, were investigated. In the developed system, the learning of symbolic constraints is integrated with low-level control algorithms, which is essential to enable active robot learning.

Findings

The authors demonstrated that the proposed reasoning algorithms can be used to learn previously unknown assembly constraints that are needed to implement a planner for automated assembly. Cranfield benchmark, which is a standardized benchmark for testing algorithms for robot assembly, was used to evaluate the proposed approaches. The authors evaluated the learning performance both in simulation and on a real robot.

Practical implications

The authors' approach reduces the amount of programming that is needed to set up new assembly cells and consequently the overall set up time when new products are introduced into the workcell.

Originality/value

In this paper, the authors propose a new approach for learning assembly constraints based on programming by demonstration and active robot exploration to reduce the computational complexity of the underlying search problems. The authors developed algorithms for success/failure detection of assembly operations based on the comparison of expected signals (forces and torques, positions and orientations of the assembly parts) with the actual signals sensed by a robot. In this manner, all precedence and object size and location constraints can be learned, thereby providing the necessary input for the optimal planning of the entire assembly process.

Details

Industrial Robot: An International Journal, vol. 43 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2024

Sa Xiao, Xuyang Chen, Yuankai Lu, Jinhua Ye and Haibin Wu

Imitation learning is a powerful tool for planning the trajectory of robotic end-effectors in Cartesian space. Present methods can adapt the trajectory to the obstacle; however…

Abstract

Purpose

Imitation learning is a powerful tool for planning the trajectory of robotic end-effectors in Cartesian space. Present methods can adapt the trajectory to the obstacle; however, the solutions may not always satisfy users, whereas it is hard for a nonexpert user to teach the robot to avoid obstacles in time as he/she wishes through demonstrations. This paper aims to address the above problem by proposing an approach that combines human supervision with the kernelized movement primitives (KMP) model.

Design/methodology/approach

This approach first extracts the reference database used to train KMP from demonstrations by using Gaussian mixture model and Gaussian mixture regression. Subsequently, KMP is used to modulate the trajectory of robotic end-effectors in real time based on feedback from its interaction with humans to avoid obstacles, which benefits from a novel reference database update strategy. The user can test different obstacle avoidance trajectories in the current task until a satisfactory solution is found.

Findings

Experiments performed with the KUKA cobot for obstacle avoidance show that this approach can adapt the trajectories of the robotic end-effector to the user’s wishes in real time, including trajectories that the robot has already passed and has not yet passed. Simulation comparisons also show that it exhibits better performance than KMP with the original reference database update strategy.

Originality/value

An interactive learning approach based on KMP is proposed and verified, which not only enables users to plan the trajectory of robotic end-effectors for obstacle avoidance more conveniently and efficiently but also provides an effective idea for accomplishing interactive learning tasks under constraints.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 August 2018

Li Pan, Guanjun Bao, Fang Xu and Libin Zhang

This paper aims to present an adaptive robust sliding mode tracking controller for a 6 degree-of-freedom industrial assembly robot with parametric uncertainties and external…

Abstract

Purpose

This paper aims to present an adaptive robust sliding mode tracking controller for a 6 degree-of-freedom industrial assembly robot with parametric uncertainties and external disturbances. The controller is used to achieve both stringent trajectory tracking, accurate parameter estimations and robustness against external disturbances.

Design/methodology/approach

The controller is designed based on the combination of sliding mode control, adaptive and robust controls and hence has good adaptation and robustness abilities to parametric variations and uncertainties. The unknown parameter estimates are updated online based on a discontinuous projection adaptation law. The robotic dynamics is first formulated in both joint spaces and workspace of the robot’s end-effector. Then, the design procedure of the adaptive robust sliding mode tracking controller and the parameter update law is detailed.

Findings

Comparative tests are also conducted to verify the effectiveness of the proposed controller, which show that the proposed controller achieves significantly better dynamic trajectory tracking performances as compared with conventional proportional derivative controller and sliding mode controller under the same conditions.

Originality/value

This is a new innovation for industrial assembly robot to improve assembly automation.

Article
Publication date: 18 January 2021

Hua Zhou, Dong Wei, Yinglong Chen and Fa Wu

To promote the intuitiveness of collaborative tasks, the negotiation ability of humans with each other has inspired a large amount of studies aimed at reproducing the capacity in…

215

Abstract

Purpose

To promote the intuitiveness of collaborative tasks, the negotiation ability of humans with each other has inspired a large amount of studies aimed at reproducing the capacity in physical human-robot interaction (pHRI). This paper aims to promote mutual adaptation in negotiation when both parties possess incomplete information.

Design/methodology/approach

This paper introduces virtual fixtures into the traditional negotiation mechanism, locally regulating tracking trajectory and impedance parameters in the negotiating phase until the final plan integrates bilateral intentions well. In the strategy, robots convey its task information to humans and offer groups of guide plans for them to choose, on the premise of maximizing the robot’s own profits.

Findings

Compared with traditional negotiation strategies, humans adapt to robots easily and show lower cognitive load in the method, while the satisfied plan shows better performance for the whole human-robot system.

Originality/value

In this study, this paper proposes a novel negotiation strategy to facilitate the mutual adaptation of humans and robots in complicated shared tasks, especially when both parties possess incomplete information of tasks.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 October 2014

Fares J. Abu-Dakka, Bojan Nemec, Aljaž Kramberger, Anders Glent Buch, Norbert Krüger and Ales Ude

– The purpose of this paper is to propose a new algorithm based on programming by demonstration and exception strategies to solve assembly tasks such as peg-in-hole.

1114

Abstract

Purpose

The purpose of this paper is to propose a new algorithm based on programming by demonstration and exception strategies to solve assembly tasks such as peg-in-hole.

Design/methodology/approach

Data describing the demonstrated tasks are obtained by kinesthetic guiding. The demonstrated trajectories are transferred to new robot workspaces using three-dimensional (3D) vision. Noise introduced by vision when transferring the task to a new configuration could cause the execution to fail, but such problems are resolved through exception strategies.

Findings

This paper demonstrated that the proposed approach combined with exception strategies outperforms traditional approaches for robot-based assembly. Experimental evaluation was carried out on Cranfield Benchmark, which constitutes a standardized assembly task in robotics. This paper also performed statistical evaluation based on experiments carried out on two different robotic platforms.

Practical implications

The developed framework can have an important impact for robot assembly processes, which are among the most important applications of industrial robots. Our future plans involve implementation of our framework in a commercially available robot controller.

Originality/value

This paper proposes a new approach to the robot assembly based on the Learning by Demonstration (LbD) paradigm. The proposed framework enables to quickly program new assembly tasks without the need for detailed analysis of the geometric and dynamic characteristics of workpieces involved in the assembly task. The algorithm provides an effective disturbance rejection, improved stability and increased overall performance. The proposed exception strategies increase the success rate of the algorithm when the task is transferred to new areas of the workspace, where it is necessary to deal with vision noise and altered dynamic characteristics of the task.

Details

Industrial Robot: An International Journal, vol. 41 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 May 2018

Chao Zeng, Chenguang Yang, Zhaopeng Chen and Shi-Lu Dai

Teaching by demonstration (TbD) is a promising way for robot learning skills in human and robot collaborative hybrid manufacturing lines. Traditionally, TbD systems have only…

1066

Abstract

Purpose

Teaching by demonstration (TbD) is a promising way for robot learning skills in human and robot collaborative hybrid manufacturing lines. Traditionally, TbD systems have only concentrated on how to enable robots to learn movement skills from humans. This paper aims to develop an extended TbD system which can also enable learning stiffness regulation strategies from humans.

Design/methodology/approach

Here, the authors propose an extended dynamical motor primitives (DMP) framework to achieve this goal. In addition to the advantages of the traditional ones, the authors’ framework can enable robots to simultaneously learn stiffness and the movement from human demonstrations. Additionally, Gaussian mixture model (GMM) is used to capture the features of movement and of stiffness from multiple demonstrations of the same skill. Human limb surface electromyography (sEMG) signals are estimated to obtain the reference stiffness profiles.

Findings

The authors have experimentally demonstrated the effectiveness of the proposed framework. It shows that the authors approach could allow the robot to execute tasks in a variable impedance control mode with the learned movement trajectories and stiffness profiles.

Originality/value

In robot skill acquisition, DMP is widely used to encode robotic behaviors. So far, however, these DMP modes do not provide the ability to properly represent and generalize stiffness profiles. The authors argue that both movement trajectories and stiffness profiles should be considered equally in robot skill learning. The authors’ approach has great potential of applications in the future hybrid manufacturing lines.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 January 2020

Rohollah Hasanzadeh Fereydooni, Hassan Siahkali, Heidar Ali Shayanfar and Amir Houshang Mazinan

This paper aims to propose an innovative adaptive control method for lower-limb rehabilitation robots.

Abstract

Purpose

This paper aims to propose an innovative adaptive control method for lower-limb rehabilitation robots.

Design/methodology/approach

Despite carrying out various studies on the subject of rehabilitation robots, the flexibility and stability of the closed-loop control system is still a challenging problem. In the proposed method, surface electromyography (sEMG) and human force-based dual closed-loop control strategy is designed to adaptively control the rehabilitation robots. A motion analysis of human lower limbs is performed by using a wavelet neural network (WNN) to obtain the desired trajectory of patients. In the outer loop, the reference trajectory of the robot is modified by a variable impedance controller (VIC) on the basis of the sEMG and human force. Thenceforward, in the inner loop, a model reference adaptive controller with parameter updating laws based on the Lyapunov stability theory forces the rehabilitation robot to track the reference trajectory.

Findings

The experiment results confirm that the trajectory tracking error is efficiently decreased by the VIC and adaptively correct the reference trajectory synchronizing with the patients’ motion intention; the model reference controller is able to outstandingly force the rehabilitation robot to track the reference trajectory. The method proposed in this paper can better the functioning of the rehabilitation robot system and is expandable to other applications of the rehabilitation field.

Originality/value

The proposed approach is interesting for the design of an intelligent control of rehabilitation robots. The main contributions of this paper are: using a WNN to obtain the desired trajectory of patients based on sEMG signal, modifying the reference trajectory by the VIC and using model reference control to force rehabilitation robot to track the reference trajectory.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 August 2015

John Ogbemhe and Khumbulani Mpofu

– The purpose of this paper is to review the progress made in arc welding automation using trajectory planning, seam tracking and control methodologies.

1040

Abstract

Purpose

The purpose of this paper is to review the progress made in arc welding automation using trajectory planning, seam tracking and control methodologies.

Design/methodology/approach

This paper discusses key issues in trajectory planning towards achieving full automation of arc welding robots. The identified issues in trajectory planning are real-time control, optimization methods, seam tracking and control methodologies. Recent research is considered and brief conclusions are drawn.

Findings

The major difficulty towards realizing a fully intelligent robotic arc welding system remains an optimal blend and good understanding of trajectory planning, seam tracking and advanced control methodologies. An intelligent trajectory tracking ability is strongly required in robotic arc welding, due to the positional errors caused by several disturbances that prevent the development of quality welds. An exciting prospect will be the creation of an effective hybrid optimization technique which is expected to lead to new scientific knowledge by combining robotic systems with artificial intelligence.

Originality/value

This paper illustrates the vital role played by optimization methods for trajectory design in arc robotic welding automation, especially the non-gradient approaches (those based on certain characteristics and behaviour of biological, molecular, swarm of insects and neurobiological systems). Effective trajectory planning techniques leading to real-time control and sensing systems leading to seam tracking have also been studied.

Details

Industrial Robot: An International Journal, vol. 42 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 December 2019

Fei Guo, Shoukun Wang, Junzheng Wang and Huan Yu

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse…

Abstract

Purpose

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse rough three-dimensional (3-D) terrain.

Design/methodology/approach

Presented is a novel wheel-quadruped mobile robot with parallel driving mechanisms and based on the Stewart six degrees of freedom (6-DOF) platform. The task for traversing rough terrain is decomposed into two prospects: one is the configuration selection in terms of a local foothold cost map, in which the kinematic feasibility of parallel mechanism and terrain features are satisfied in heuristic search planning, and the other one is a whole-body controller to complete smooth and continuous motion transitions.

Findings

A fan-shaped foot search region focuses on footholds with a strong possibility of becoming foot placement, simplifying computation complexity. A receding horizon avoids kinematic deadlock during the search process and improves robot adaptation.

Research limitations/implications

Both simulation and experimental results validated the proposed scenario available and appropriate for quadruped locomotion to traverse challenging 3-D terrains.

Originality/value

This paper analyzes kinematic workspace for a parallel robot with 6-DOF Stewart mechanism on both body and foot. A fan-shaped foot search region enhances computation efficiency. Receding horizon broadens the preview search to decrease the possibility of deadlock minima resulting from terrain variation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 March 2019

Guoda Chen, Huafeng Yang, Huiqiang Cao, Shiming Ji, Xi Zeng and Qian Wang

For the climbing rod object with large diameter variation and the need of obstacle crossing, this paper aims to propose a new embracing-type climbing robot named as EVOC-I robot.

Abstract

Purpose

For the climbing rod object with large diameter variation and the need of obstacle crossing, this paper aims to propose a new embracing-type climbing robot named as EVOC-I robot.

Design/methodology/approach

The design philosophy and structural scheme are introduced. The kinematic analysis of embracing and telescoping mechanisms is carried out to provide the theoretical foundation for the effective climbing of the robot. Based on the prototype robot, three preliminary experiments are carried out to verify the effectiveness of the designed robot.

Findings

The theoretical and experimental analyses have verified the reasonability and effectiveness of the proposed robot design.

Research limitations/implications

As the preliminary study, the prototype still need a lot of improvement. The experimental verification is also limited. Future work will focus on improving the design and increasing the theoretical analysis, especially increasing experimental study and designing the next generation of the rod climbing robot.

Practical implications

The designed climbing robot can be used for climbing the rod with variation diameter and flange obstacle, especially the lightening rod in the transformer substation.

Originality/value

The paper designs a new climbing robot that integrates the ability of large variation diameter adaptation and obstacle crossing.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 563