Search results

1 – 10 of over 1000
Article
Publication date: 30 January 2007

O. Ahad and J.M.R. Graham

This paper aims to create an accurate computer‐based flight simulation of the FanWing experimental aircraft. The model would then be used to record and document the aircraft's…

1411

Abstract

Purpose

This paper aims to create an accurate computer‐based flight simulation of the FanWing experimental aircraft. The model would then be used to record and document the aircraft's performance and handling qualities.

Design/methodology/approach

The project consisted of three phases. The first was to simplify and convert existing aerodynamic data into a form that was compatible with the simulation software. The second phase involved the development of the model, and the third, flight testing.

Findings

The aircraft performance and handling qualities of the aircraft were recorded in all flight phases.

Research limitations/implications

The FanWing's aerodynamics are unusual and software limitations prevented its characteristics from being implemented directly. This meant that certain flight tests could not be carried out accurately.

Practical implications

The model will likely be used as a preliminary training tool for the FanWing's first pilots. It is also a useful publicity tool for the aircraft, and provides an insight into how this unusual aircraft flies, from a pilot's perspective.

Originality/value

Prior to this research, only aerodynamic data had documented the aircraft's performance. The simulation model allowed for conventional flight data to be recorded, and compared with similar aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 September 2017

Ewa Cichocka

The paper focuses on the evaluation of a light aircraft spin. The main purpose of this paper is to achieve reliable mathematical models of aircraft motion beyond stall conditions…

Abstract

Purpose

The paper focuses on the evaluation of a light aircraft spin. The main purpose of this paper is to achieve reliable mathematical models of aircraft motion beyond stall conditions to subsequently predict spin properties based on calculation only. Another vitally significant objective is to verify whether the aerodynamic characteristics determined numerically are coherent with the wind tunnel measurements performed on the dynamically scaled aircraft models.

Design/methodology/approach

The analysis was carried out for two certified conventional light aircraft. The first part of the investigation is devoted to the verification of the simplified methods used to identify the aircraft recoverability from spinning steady-state turns and estimate the primary post-stall flight parameters. Then, the spin simulations were executed. The computational results were thereafter compared with the in-flight data recordings.

Findings

The study confirms the coincidence between the calculated spinning behaviour and the observed aircraft response during the flight tests. The mathematical models of aircraft spatial motion have been found to be credible for predicting spin properties. The simplified methods are reliable to determine the basic spin performance of light aircraft at the preliminary design stage, whereas the spin simulations enable recognition and comprehensive examination of all spin modes.

Practical implications

The outcomes of conducted calculation and comparisons of computational spin properties with flight test recordings have indicated that the qualitative assessment of spinning motion is enabled at each stage of the designing process.

Originality/value

The paper involves the comparison of the computational results with the recordings of spin in-flight tests and the correlation between calculated and experimentally obtained aerodynamics of light aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 26 April 2022

Jingfeng Xie, Jun Huang, Lei Song, Jingcheng Fu and Xiaoqiang Lu

The typical approach of modeling the aerodynamics of an aircraft is to develop a complete database through testing or computational fluid dynamics (CFD). The database will be huge…

2043

Abstract

Purpose

The typical approach of modeling the aerodynamics of an aircraft is to develop a complete database through testing or computational fluid dynamics (CFD). The database will be huge if it has a reasonable resolution and requires an unacceptable CFD effort during the conceptional design. Therefore, this paper aims to reduce the computing effort required via establishing a general aerodynamic model that needs minor parameters.

Design/methodology/approach

The model structure was a preconfigured polynomial model, and the parameters were estimated with a recursive method to further reduce the calculation effort. To uniformly disperse the sample points through each step, a unique recursive sampling method based on a Voronoi diagram was presented. In addition, a multivariate orthogonal function approach was used.

Findings

A case study of a flying wing aircraft demonstrated that generating a model with acceptable precision (0.01 absolute error or 5% relative error) costs only 1/54 of the cost of creating a database. A series of six degrees of freedom flight simulations shows that the model’s prediction was accurate.

Originality/value

This method proposed a new way to simplify the model and recursive sampling. It is a low-cost way of obtaining high-fidelity models during primary design, allowing for more precise flight dynamics analysis.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 October 2023

Andrzej Krzysiak, Robert Placek, Aleksander Olejnik and Łukasz Kiszkowiak

The main purpose of this study was to determine the basic aerodynamic characteristics of the airliner Tu-154M at the wide range of the overcritical angles of attack and sideslip…

Abstract

Purpose

The main purpose of this study was to determine the basic aerodynamic characteristics of the airliner Tu-154M at the wide range of the overcritical angles of attack and sideslip angles, i.e. α = −900° ÷ 900° and β = −900° ÷ 900°.

Design/methodology/approach

Wind tunnel tests of the Tu-154M aircraft model at the scale 1:20 were performed in a low-speed wind tunnel T-3 by using a six-component internal aerodynamic balance. Several model configurations were also investigated.

Findings

The results of the presented studies showed that at the wide range of the overcritical angles of attack and sideslip angles, i.e. α = −900° ÷ 900° and β = −900° ÷ 900°, the Tu-154M aircraft flap deflection affected the values of the drag and lift coefficients and generally had no major effect on the values of the side force and pitching moment coefficients.

Research limitations/implications

The model vibration which was the result of flow separation at high angles of attack was the wind tunnel test limitation.

Practical implications

Studies of the airliner aerodynamic characteristics at the wide range of the overcritical angles of attack and sideslip angles allow assessment of the aircraft aerodynamic properties during possible unexpected situations when the passenger aircraft is found to have gone beyond the conventional flight envelope.

Social implications

There are no social implications of this study to report.

Originality/value

The presented wind tunnel test results of the airliner aerodynamic characteristics at overcritical angles of attack and sideslip angles is an original contribution to the existing not-too-extensive database available in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 1 October 2004

Brian L. Stevens and Frank L. Lewis

2417

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 20 October 2014

Nattapon Chantarapanich, Apinya Laohaprapanon, Sirikul Wisutmethangoon, Pongnarin Jiamwatthanachai, Prasert Chalermkarnnon, Sedthawatt Sucharitpwatskul, Puttisak Puttawibul and Kriskrai Sitthiseripratip

The purpose of this paper was to investigate the feasibility on design and production of a three-dimensional honeycomb based on selective laser melting (SLM) technique for use in…

1243

Abstract

Purpose

The purpose of this paper was to investigate the feasibility on design and production of a three-dimensional honeycomb based on selective laser melting (SLM) technique for use in aeronautical application.

Design/methodology/approach

Various polyhedrons were investigated using their mechanical property, i.e. strain energy density (SED), by means of finite element (FE) analysis for the suitability of use in aerospace application; the highest SED polyhedron was selected as a candidate polyhedron. From the FE analysis, the truncated octahedron (three-dimensional honeycomb) structure was considered to be the potential candidate. Polyhedron size and beam thickness of the open-cellular three-dimensional honeycomb structure were modelled and analysed to observe how the geometric properties influence the stiffness of the structure. One selected model of open-cellular honeycomb (unit cell size: 2.5 mm and beam thickness: 0.15 mm) was fabricated using SLM. The SLM prototypes were assessed by their mechanical properties, including compressive strength, stiffness and strength per weight ratio. To investigate the feasibility in production of airfoil section sandwich structure, NACA 0016 airfoil section with three-dimensional honeycomb core was constructed and also fabricated using SLM.

Findings

According to the result, the three-dimensional honeycomb has elastic modulus of 63.18 MPa and compressive strength of 1.1 MPa, whereas strength per weight ratio is approximately 5.0 × 103 Nm/kg. The FE result presented good agreement to the mechanical testing result. The geometric parameter of the three-dimensional honeycomb structure influences the stiffness, especially the beam thickness, i.e. increase of beam thickness obviously produces the stiffer structure. In addition, the sandwich structure of airfoil was also successfully manufactured.

Originality/value

This work demonstrated the production of sandwich structure of airfoil using SLM for aeronautical engineering. This investigation has shown the potential applications of the three-dimensional structure, e.g. aircraft interior compartment components and structure of unmanned aerial vehicles.

Details

Rapid Prototyping Journal, vol. 20 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 June 2013

Zhang Xingwei, Zhou Chaoying, Zhang Tao and Ji Wenying

The purpose of this paper is to investigate the effect of spanwise shape of the leading edge on unsteady aerodynamic characteristics of wings during forward flapping and gliding…

Abstract

Purpose

The purpose of this paper is to investigate the effect of spanwise shape of the leading edge on unsteady aerodynamic characteristics of wings during forward flapping and gliding flight.

Design/methodology/approach

A computational fluid dynamics approach was conducted to analyze the flow around airfoils with sinusoidal‐like protuberances at a Reynolds number of 104. Three‐dimensional time‐dependent incompressible Navier‐Stokes equations are numerically solved by using finite volume method. A multigrid mesh method, which was applied to the situation of fluid across the heaving models is used to simulate this type of flow. The simulations are performed for the wavelength between neighbouring peaks of 0.25c and 0.5c. For each wavelength, two heights of the tubercles which are 5 per cent and 10 per cent of the chordwise length of wing, are employed on the leading edge of wings. The aerodynamic forces and flow structure around airfoils are presented and compared in detail. Special attention is paid to investigate the effect of leading‐edge shape on the fluid dynamic forces.

Findings

Present results reveal that the wings with leading‐edge tubercles have an aerodynamic advantage during gliding flight and also have the potential advantages during flapping forward flight.

Originality/value

On the basis of computational study, an improved scenario for flapping wing microaviation vehicle has been originally proposed.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 October 2018

Ewa Marcinkiewicz, Zdobyslaw Jan Goraj and Marcin Figat

The purpose of this paper is to describe an integrated approach to spin analysis based on 6-DOF (degrees of freedom) fully nonlinear equations of motion and a three-dimensional…

Abstract

Purpose

The purpose of this paper is to describe an integrated approach to spin analysis based on 6-DOF (degrees of freedom) fully nonlinear equations of motion and a three-dimensional multigrid Euler method used to specify a flow model. Another purpose of this study is to investigate military trainer performance during a developed phase of a deliberately executed spin, and to predict an aircraft tendency while entering a spin and its response to control surface deflections needed for recovery.

Design/methodology/approach

To assess spin properties, the calculations of aerodynamic characteristics were performed through an angle-of-attack range of −30 degrees to +50 degrees and a sideslip-angle range of −30 degrees to +30 degrees. Then, dynamic equations of motion of a rigid aircraft together with aerodynamic loads being premised on stability derivatives concept were numerically integrated. Finally, the examination of light turboprop dynamic behaviour in post-stalling conditions was carried out.

Findings

The computational method used to evaluate spin was positively verified by comparing it with the experimental outcome. Moreover, the Euler code-based approach to lay down aerodynamics could be considered as reliable to provide high angles-of-attack characteristics. Conclusions incorporate the results of a comparative analysis focusing especially on comprehensive assessment of output data quality in relation to flight tests.

Originality/value

The conducted calculations take into account aerodynamic and flight dynamic interaction of an aerobatic-category turboprop in spin conditions. A number of manoeuvres considering different aircraft configurations were simulated. The computational outcomes were subsequently compared to the results of in-flight tests and the collected data were thoroughly analysed to draw final conclusions.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Shawn S. Keshmiri, Edward Lan and Richard Hale

The purpose of this paper is to evaluate the accuracy of linear and quasi-steady aerodynamic models of aircraft aerodynamic models when a small unmanned aerial system flies in the…

Abstract

Purpose

The purpose of this paper is to evaluate the accuracy of linear and quasi-steady aerodynamic models of aircraft aerodynamic models when a small unmanned aerial system flies in the presence of strong wind and gust at a high angle of attack and a high sideslip angle.

Design/methodology/approach

Compatibility analysis were done to improve the quality of recorded flight test data. A robust method called fuzzy logic modeling is used to set up the aerodynamic models. The reduced frequency is used to represent the unsteadiness of the flow field according to Theodorsen’s theory. The work done by the aerodynamic moments on the motions is used as the criteria of stability.

Findings

In portions of flight, aircraft’s stability and control derivatives were unstable and nonlinear functions of airflow angles and angular rates. The roll angle had an important effect on unsteadiness of directional oscillatory damping derivatives. The pilot-induced oscillation and wing rock possibilities were investigated and dismissed so that the lateral directional oscillatory motion was classified as a nonlinear Dutch roll oscillation. Major modeling enhancements or real-time parameter identification are required for the control of a small unmanned aerial system in off-nominal conditions. The robustness tests of all-weather autopilot systems must be done with consideration of sign change.

Originality/value

Oscillatory damping derivatives were reconstructed using flight test data and the inadequacy of engineering level software in predicting this type of instability observed and demonstrated for a flight in the presence of wind shear and external disturbances.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 September 1962

J.C. Hamilton

DURING the first forty years or so of the history of manned flight, the application of aerodynamics was confined largely to subsonic speeds and to one basic aircraft shape. Since…

Abstract

DURING the first forty years or so of the history of manned flight, the application of aerodynamics was confined largely to subsonic speeds and to one basic aircraft shape. Since the end of the Second World War the aerodynamic domain has expanded in spectacular fashion in terms of speed and shape until at the present time ‘conventional’ manned aircraft are penetrating into the realms of hypersonic velocities and the satellite vehicle has brought with it aerodynamic problems at what must surely be the near‐ultimate speed range for the technology. Nor are these advances confined to high‐speed aerodynamics: they include radically new approaches to low‐speed problems, particularly those arising from take‐off and landing manoeuvres.

Details

Aircraft Engineering and Aerospace Technology, vol. 34 no. 9
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 1000