Search results

1 – 10 of 12
Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 July 2024

Francisco Sánchez-Moreno, David MacManus, Fernando Tejero and Christopher Sheaf

Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost…

Abstract

Purpose

Aerodynamic shape optimisation is a complex problem usually governed by transonic non-linear aerodynamics, a high dimensional design space and high computational cost. Consequently, the use of a numerical simulation approach can become prohibitive for some applications. This paper aims to propose a computationally efficient multi-fidelity method for the optimisation of two-dimensional axisymmetric aero-engine nacelles.

Design/methodology/approach

The nacelle optimisation approach combines a gradient-free algorithm with a multi-fidelity surrogate model. Machine learning based on artificial neural networks (ANN) is used as the modelling technique because of its ability to handle non-linear behaviour. The multi-fidelity method combines Reynolds-averaged Navier Stokes and Euler CFD calculations as high- and low-fidelity, respectively.

Findings

Ratios of low- and high-fidelity training samples to degrees of freedom of nLF/nDOFs = 50 and nHF/nDOFs = 12.5 provided a surrogate model with a root mean squared error less than 5% and a similar convergence to the optimal design space when compared with the equivalent CFD-in-the-loop optimisation. Similar nacelle geometries and aerodynamic flow topologies were obtained for down-selected designs with a reduction of 92% in the computational cost. This highlights the potential benefits of this multi-fidelity approach for aerodynamic optimisation within a preliminary design stage.

Originality/value

The application of a multi-fidelity technique based on ANN to the aerodynamic shape optimisation problem of isolated nacelles is the key novelty of this work. The multi-fidelity aspect of the method advances current practices based on single-fidelity surrogate models and offers further reductions in computational cost to meet industrial design timescales. Additionally, guidelines in terms of low- and high-fidelity sample sizes relative to the number of design variables have been established.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 1 June 2023

Marcin Figat and Agnieszka Kwiek

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced…

2321

Abstract

Purpose

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced drag. The purpose of this paper is to determine whether a certain trend in the wingspan impact on aircraft dynamic stability can be identified. The secondary goal was to compare the response to control of flaps placed on a front and rear wing.

Design/methodology/approach

The aerodynamic data and control derivatives were obtained from the computational fluid dynamics computations performed by the MGAERO software. The equations of aircraft longitudinal motion in a state space form were used. The equations were built based on the aerodynamic coefficients, stability and control derivatives. The analysis of the dynamic stability was done in the MATLAB by solving the eigenvalue problem. The response to control was computed by the step response method using MATLAB.

Findings

The results of this study showed that because of a strong aerodynamic coupling, a nonlinear relation between the wing size and aircraft dynamic stability proprieties was observed. In the case of the flap deflection, stronger oscillation was observed for the front flap.

Originality/value

Results of dynamic stability of aircraft in the tandem wing configuration can be found in the literature, but those studies show outcomes of a single configuration, while this paper presents a comprehensive investigation into the impact of wingspan on aircraft dynamic stability. The results reveal that because of a strong aerodynamic coupling, the relation between the span factor and dynamic stability is nonlinear. Also, it has been demonstrated that the configuration of two wings with the same span is not the optimal one from the aerodynamic point of view.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 May 2024

Syam Narayanan S., Rajalakshmi Pachamuthu, Alex T. Biju and Srilekha Madupu

This study aims to discuss the mathematical modelling of a compliance-assisted flapping mechanism and morphable structures for an UAV.

Abstract

Purpose

This study aims to discuss the mathematical modelling of a compliance-assisted flapping mechanism and morphable structures for an UAV.

Design/methodology/approach

A compliance-assisted flapping wing was designed and modelled mathematically, and signals for the corresponding curves were calculated. The actual wing tip trace of a hummingbird was taken, and variables a, b, h and k were calculated from the image. This data was given to the mathematical model for plotting the graph, and the curve was compared with the input curve. The wing frame and mechanism for control surfaces using morphing is modelled along with single pivoted spine for centre of gravity augmentation and flight orientation control.

Findings

The model efficiently approximates the 2D path of the wing using line segments using the muscle and compliance mechanism.

Practical implications

Using a compliance-assisted flapping mechanism offers practical advantages. It allows us to synchronize the flapping frequency with the input signal frequency, ensuring efficient operation. Additionally, the authors can enhance the torque output by using multiple muscle strands, resulting in a substantial increase in the system’s torque-to-weight ratio. This approach proves to be more favourable when compared to conventional methods involving motors or servos, ultimately offering a more efficient and robust solution for practical application.

Social implications

This model focuses on creating a flexible and tunable mechanism that can at least trace four types of wing traces from the same design, for shifting from one mode of flight to another.

Originality/value

Conventional ornithopter flapping mechanisms are gear or servo driven and cannot trace a wing tip, but some can trace complicated curves, but only one at a time. This model can trace multiple curves using the same hardware, allowing the user to program the curve based on their needs or bird. The authors may vary the shape of the wing tip trace to switch between forward flight, hovering, backward flying, etc., which is not conceivable with any traditional flapping mechanism.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2023

Mano S. and Nadaraja Pillai S.

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently…

Abstract

Purpose

This study aims to investigate the effect of downstream characteristics of S809 wind turbine blade with various extended flat plate (EFP) configuration. Wind farms are recently modified to improve the power production through placing number of wind turbines and locations.

Design/methodology/approach

A series of wind tunnel experiments were carried out to evaluate the downstream wake characteristics of the S809 airfoil attached with various EFP (EFP, A = 0.1C, 0.2C and 0.3C) at various angles of attack corresponding to free stream velocity Reynolds number (Re) = 2.11 × 105 and various turbulence intensity (TI = 5%, 7%, 10% and 12%).

Findings

For the S809 wind turbine blade attached with EFP, the downstream velocity ratio decreases with increasing in angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%. The wake intensity for the S809 wind turbine blade and S809 airfoil with 10% of chord EFP performs the same for each downstream location.

Practical implications

Placing the wind turbine in the wind park next to another wind turbine poses a potential challenge for the park power performance. This research addresses the characteristics of the downstream turbulence intensity profile modified with the EFP in the wind turbine blade which improves the downstream characteristics of the turbine in the wind park.

Originality/value

The downstream velocity ratio decreases with increasing angle of attack and the velocity deficit decrease with increasing turbulence intensity (TI) up to TI = 10%.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 July 2024

Bahadır Cinoğlu

The purpose of this study is to determine propeller damage based on acoustic recordings taken from unmanned aerial vehicle (UAV) propellers operated at different thrust conditions…

Abstract

Purpose

The purpose of this study is to determine propeller damage based on acoustic recordings taken from unmanned aerial vehicle (UAV) propellers operated at different thrust conditions on a test bench. Propeller damage is especially critical for fixed-wing UAVs to sustain a safe flight. The acoustic characteristics of the propeller vary with different propeller damages.

Design/methodology/approach

For the research, feature extraction methods and machine learning techniques were used during damage detection from propeller acoustic data. First of all, sound recordings were obtained by operating five different damaged propellers and undamaged propellers under three different thrusts. Afterwards, the harmonic-to-noise ratio (HNR) feature extraction technique was applied to these audio recordings. Finally, model training and validation were performed by applying the Gaussian Naive Bayes machine learning technique to create a diagnostic approach.

Findings

A high recall value of 96.19% was obtained in the performance results of the model trained according to damaged and undamaged propeller acoustic data. The precision value was 73.92% as moderate. The overall accuracy value of the model, which can be considered as general performance, was obtained as 81.24%. The F1 score has been found as 83.76% which provides a balanced measure of the model’s precision and recall values.

Practical implications

This study include provides solid method to diagnose UAV propeller damage using acoustic data obtain from the microphone and allows identification of differently damaged propellers. Using that, the risk of in-flight failures can be reduced and maintenance costs can be lowered with addressing the occurred problems with UAV propeller before they worsen.

Originality/value

This study introduces a novel method to diagnose damaged UAV propellers using the HNR feature extraction technique and Gaussian Naive Bayes classification method. The study is a pioneer in the use of HNR and the Gaussian Naive Bayes and demonstrates its effectiveness in augmenting UAV safety by means of propeller damages. Furthermore, this approach contributes to UAV operational reliability by bridging the acoustic signal processing and machine learning.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 August 2024

Xiaohui Xiong, Jiaxu Geng, Kaiwen Wang and Xinran Wang

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method…

Abstract

Purpose

This paper aims to investigate the effect of different wing height layouts on the aerodynamic performance and flow structure of high-speed train, in a train-wing coupling method with multiple tandem wings installed on the train roof.

Design/methodology/approach

The improved delayed detached eddy simulation method based on shear stress transport k- ω turbulence model has been used to conduct computational fluid dynamics simulation on the train with three different wing height layouts, at a Reynolds number of 2.8 × 106. The accuracy of the numerical method has been validated by wind tunnel experiments.

Findings

The wing height layout has a significant effect on the lift, while its influence on the drag is weak. There are three distinctive vortex structures in the flow field: wingtip vortex, train body vortex and pillar vortex, which are influenced by the variation in wing height layout. The incremental wing layout reduces the mixing and merging between vortexes in the flow field, weakening the vorticity and turbulence intensity. This enhances the pressure difference between the upper and lower surfaces of both the train and wings, thereby increasing the overall lift. Simultaneously, it reduces the slipstream velocity at platform and trackside heights.

Originality/value

This paper contributes to understanding the aerodynamic characteristics and flow structure of a high-speed train coupled with wings. It provides a reference for the design aiming to achieve equivalent weight reduction through aerodynamic lift synergy in trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 December 2023

Ying-Jie Guan and Yong-Ping Li

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately…

Abstract

Purpose

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately, this paper aims to propose a four-axis eight-rotor rescue unmanned aerial vehicle (UAV) which can carry a radar life detector. As the design of propeller is the key to the design of UAV, this paper mainly designs the propeller of the UAV at the present stage.

Design/methodology/approach

Based on the actual working conditions of UAVs, this paper preliminarily estimated the load of UAVs and the diameters of propellers and designed the main parameters of propellers according to the leaf element theory and momentum theory. Based on the low Reynolds number airfoil, this paper selected the airfoil with high lift drag ratio from the commonly used low Reynolds number airfoils. The chord length and twist angle of propeller blades were calculated according to the Wilson method and the maximum wind energy utilization coefficient and were optimized by the Asymptotic exponential function. The aerodynamic characteristics of the designed single propeller and coaxial propeller under different installation pitch angles and different installation distances were analyzed.

Findings

The results showed that the design of coaxial twin propellers can increase the load capacity by about 1.5 times without increasing the propeller diameter. When the installation distance between the two propellers was 8 cm and the tilt angle was 15° counterclockwise, the aerodynamic characteristics of the coaxial propeller were optimal.

Originality/value

The novelty of this work came from the conceptual design of the new rescue UAV and its numerical optimization using the Wilson method combined with the maximum wind energy utilization factor and the exponential function. The aerodynamic characteristics of the common shaft propeller were analyzed under different mounting angles and different mounting distances.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 August 2024

Zeyad M. Manaa and Naef A.A. Qasem

This study aims to validate the linear flow theory with computational fluid dynamics (CFD) simulations and to propose a novel shape for the airfoil that will improve supersonic…

43

Abstract

Purpose

This study aims to validate the linear flow theory with computational fluid dynamics (CFD) simulations and to propose a novel shape for the airfoil that will improve supersonic aerodynamic performance compared to the National Advisory Committee for Aeronautics (NACA) 64a210 airfoil.

Design/methodology/approach

To design the new airfoil shape, this study uses a convex optimization approach to obtain a global optimal shape for an airfoil. First, modeling is conducted using linear flow theory, and then numerical verification is done by CFD simulations using ANSYS Fluent. The optimization process ensures that the new airfoil maintains the same cross-sectional area and thickness as the NACA 64a210 airfoil. This study found that an efficient way to obtain the ideal airfoil shape is by using linear flow theory, and the numerical simulations supported the assumptions inherent in the linear flow theory.

Findings

This study’s findings show notable improvements (from 4% to 200%) in the aerodynamic performance of the airfoil, especially in the supersonic range, which points to the suggested airfoil as a potential option for several fighter aircraft. Under various supersonic conditions, the optimized airfoil exhibits improved lift-over-drag ratios, leading to improved flight performance and lower fuel consumption.

Research limitations/implications

This study was conducted mainly for supersonic flow, whereas the subsonic flow is tested for a Mach number of 0.7. This study would be extended for both subsonic and supersonic flights.

Practical implications

Convex optimization and linear flow theory are combined in this work to create an airfoil that performs better in supersonic conditions than the NACA 64a210. By closely matching the CFD results, the linear flow theory's robustness is confirmed. This means that the initial design phase no longer requires extensive CFD simulations, and the linear flow theory can be used quickly and efficiently to obtain optimal airfoil shapes.

Social implications

The proposed airfoil can be used in different fighter aircraft to enhance performance and reduce fuel consumption. Thus, lower carbon emission is expected.

Originality/value

The unique aspect of this work is how convex optimization and linear flow theory were combined to create an airfoil that performs better in supersonic conditions than the NACA 64a210. Comprehensive CFD simulations were used for validation, highlighting the optimization approach's strength and usefulness in aerospace engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 12