Search results

1 – 10 of 34
Article
Publication date: 1 September 2006

O.C. Mendes, R.F. Ávila, A.M. Abrão, Pedro Reis and J. Paulo Davim

The knowledge over the performance of cutting fluids when applied under different machining conditions (such as distinct work material and cutting parameters) is critical in order…

1148

Abstract

Purpose

The knowledge over the performance of cutting fluids when applied under different machining conditions (such as distinct work material and cutting parameters) is critical in order to improve the efficiency of most machining operations. This paper is concerned with the performance of cutting fluids employed under two distinct machining operations involving aluminium alloys: drilling of AA 1050‐O aluminium applying cutting fluid as a mist and turning of AA 6262‐T6 aluminium alloy using cutting fluids (as a flood) with distinct extreme pressure additives (chlorine, sulphur and phosphor).

Design/methodology/approach

This work reports on a experimental study of the performance of cutting fluids when machining aluminium alloys.

Findings

The results indicated an increase in the flow rate of the mist led to lower feed forces but higher torque, power consumption and specific cutting pressure in the drilling operation (AA 1050‐O aluminium). The surface finish was not drastically affected by the cutting fluid flow rate. When turning AA 6162‐T6 aluminium alloy, in general, best results were observed using 10 per cent fluid concentration applied at the tool‐workpiece interface. The cutting fluid containing chlorine as extreme pressure additive produced lower cutting forces and better surface finish at high cutting speed and low feed rate and depth of cut.

Originality/value

The novel element of this paper is the use of minimal lubrication (drilling) and cutting fluids with distinct extreme pressure (turning).

Details

Industrial Lubrication and Tribology, vol. 58 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2008

Yusuf Sahin and A. Riza Motorcu

This paper presents a study of the development of surface roughness model when turning the mild steel hardened up to 484 HV with mixed alumina ceramic (KY1615) and coated alumina…

Abstract

This paper presents a study of the development of surface roughness model when turning the mild steel hardened up to 484 HV with mixed alumina ceramic (KY1615) and coated alumina ceramic cutting tools (KY4400). The model was developed in terms of main cutting parameters such as cutting speed, feed rate and depth of cut, using response surface methodology. The established equation indicated that the feed rate affected the surface roughness the most, but other parametres remined stable for arithmetic average height parametre (Ra). However, it decreased with increasing the cutting speed, and with the starting and finishing point of cut for ten point height parametre (Rz). The cutting speed and the depth of cut had a slight effect on surface roughness values of Ra, Rz when using KY4400 cutting tools. Furthermore, the average surface roughness value of Ra was about 0.926 um, 1.089 um for KY1615, KY4400 cutting tools, respectively. The predicted surface roughness was found to be very close to experimentally observed ones at 95% confidence level. Moreover, analysis of variance indicated that squares terms were significant but interaction terms were insignificant for both cutting tools.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 November 2014

Amrinder Pal Singh, Manu Sharma and Inderdeep Singh

Damage due to delamination is an important issue during drilling in polymer-matrix composites (PMCs). It depends on thrust force and torque which are functions of feed rate…

Abstract

Purpose

Damage due to delamination is an important issue during drilling in polymer-matrix composites (PMCs). It depends on thrust force and torque which are functions of feed rate. Transfer function of thrust force with feed rate and torque with feed rate is constructed through experiments. These transfer functions are then combined in state-space to formulate a sixth-order model. Then thrust force and torque are controlled by using optimal controller. The paper aims to discuss these issues.

Design/methodology/approach

A glass fiber reinforced plastic composite is drilled at constant feed rate during experimentation. The corresponding time response of thrust force and torque is recorded. Third-order transfer functions of thrust force with feed rate and torque with feed rate are identified using system identification toolbox of Matlab®. These transfer functions are then converted into sixth-order combined state-space model. Optimal controller is then designed to track given reference trajectories of thrust force/torque during drilling in composite laminate.

Findings

Optimal control is used to simultaneously control thrust force as well as torque during drilling. There is a critical thrust force during drilling below which no delamination occurs. Therefore, critical thrust force profile is used as reference for delamination free drilling. Present controller precisely tracks the critical thrust force profile. Using critical thrust force as reference, high-speed drilling can be done. The controller is capable of precisely tracking arbitrary thrust force and torque profile simultaneously. Findings suggest that the control mechanism is efficient and can be effective in minimizing drilling induced damage in composite laminates.

Originality/value

Simultaneous optimal control of thrust force and torque during drilling in composites is not available in literature. Feed rate corresponding to critical thrust force trajectory which can prevent delamination at fast speed also not available has been presented.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 November 2021

Gadhamsetty Guru Mahesh and Jayakrishna Kandasamy

Drilling holes in composite materials is a complex and challenging process because of their intrinsic anisotropic characteristics and unevenness compared to conventional metals…

Abstract

Purpose

Drilling holes in composite materials is a complex and challenging process because of their intrinsic anisotropic characteristics and unevenness compared to conventional metals. Hybridization of composites enhances the strength and hardness of the material but makes it more difficult to drill a hole in it. The purpose of this study is to optimize the drilling to minimize the delamination and taperness of hybrid glass fiber reinforced plastic (GFRP)/Al2O3 composites.

Design/methodology/approach

The present study investigates the impact of drilling parameters on delamination of the drilled hole and the taperness of the hole on hybrid GFRP/Al2O3. Optimum drilling conditions for minimizing delamination and taperness of the hole are determined to enhance the hole quality. Feed (f), speed (N) and drill diameter (D) are the parameters taken into consideration for drilling operation. By applying Taguchi’s signal-to-noise ratio analysis, process parameters have been optimized to reduce the delamination and taperness of holes on Hybrid GFRP/Al2O3 composites. The effect of process parameters was analyzed using the analysis of variance method.

Findings

The investigational results confirmed that the delamination is positively affected by speed, drill diameter and feed rate. Also, the taperness of the hole is positively affected by the drill diameter. Regression-based models were developed to predict the delamination and taperness of the hole matched with the experimental results, which are attained with an order of 95% and 97%.

Originality/value

Minimum delamination was found at the optimum condition of drill diameter 10 mm, feed at 0.225 mm/rev and the speed at 151 rpm and minimum taperness were found at the optimum condition of drill diameter 10 mm, feed at level 0.3 mm/rev and speed at 86 rpm for hybrid laminate composite (S-glass+ GFRP/Al2O3) were evaluated.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2022

Yun Zhang and Xiaojie Xu

Here, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting thrust force during composite…

Abstract

Purpose

Here, the authors use step angles, stage ratios, feed rates and spindle speeds as predictors to develop a Gaussian process regression for predicting thrust force during composite laminates drilling with step drills.

Design/methodology/approach

Use of machine learning methods could benefit machining process optimizations. Accurate, stable and robust performance is one of major criteria in choosing among different models. For industrial applications, it is also important to consider model applicability, ease of implementations and cost effectiveness.

Findings

This model turns out to be simple, accurate and stable, which helps fast estimates of thrust force. Through combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.

Originality/value

Through combining the Taguchi method's optimization results and the Gaussian process regression, more data could be expected to be extracted through fewer experiments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 March 2015

Carlos Alberto Schuch Bork, Janaina Fracaro Souza Gonçalves and Jefferson Oliveira Gomes

This article aims to collect data on the aluminum alloy 7050-T7451 machinability used in the manufacturing of aeronautical structures, using the combination of the jatropha…

Abstract

Purpose

This article aims to collect data on the aluminum alloy 7050-T7451 machinability used in the manufacturing of aeronautical structures, using the combination of the jatropha vegetable-base soluble cutting oil in relation to the canola vegetal and semisynthetic mineral oils and the technique to apply cutting fluid by flood in relation to the Minimum Quantity Lubrication (MQL) in the milling process (HSM – high-speed machining).

Design/methodology/approach

It was observed that the jatropha vegetal cutting oil presented the best results in relation to requirements for lubrication, superficial mean roughness (index Ra) and shape errors in relation to the other oils in both the techniques to apply fluid which were tested. Comparing the application techniques, the jatropha vegetal oil offered an increase in the life span of the cutting tool, using the flood technique, exceeding in almost six times the machined length of the cutting tool in relation to the MQL technique in the same process conditions.

Findings

The Jatropha vegetable-base cutting oil, besides being produced from a renewable source, has inherent characteristics that can help attain a sustainable manufacturing, mainly with the use of the flood technique to apply cutting fluid in the aluminum alloy 7050-T7451 machining.

Originality/value

The Jatropha (vegetable) oil, in relation to its physicochemical properties, appeared to be the best one fit for being used in the machining of aluminum alloys 7050-T7451 because it did not interfere with any of the elements involved in the formation of intergranular corrosion and/or pitting, which are not allowed in the aeronautical production of parts. Jatropha (vegetable) cutting oil, besides being produced from a clean and renewable source, has the inherent characteristics that can help attain a sustainable manufacturing.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 May 2013

Xiaohu Zheng, Zhiqiang Liu, Qinglong An, Xibin Wang, Zongwei Xu and Ming Chen

The purpose of this paper is to investigate the cutting mechanism of drilling printed circuit board (PCB) and to optimize the drilling parameters for decreasing burr size and…

Abstract

Purpose

The purpose of this paper is to investigate the cutting mechanism of drilling printed circuit board (PCB) and to optimize the drilling parameters for decreasing burr size and thrust force.

Design/methodology/approach

An experimental study was carried out to investigate the effect of drilling parameters on thrust force and burr formation. The drilling process of PCB was divided by the variation of drilling force signals. Analysis of variance (ANVONA) was carried out for burr size and thrust force. Desirability function method was used in multiple response optimization, to find the best drilling parameters.

Findings

Enter burr and exit burr have different morphologies and types. The generation of enter burr is mainly caused by burr bending which can be observed in micrographs, whereas the generation of exit burr is more complicated than enter burr; both burr breakup and burr bending are observed in exit burrs. In the selected area, the optimized spindle speed and feed rate for drilling PCB is 12 krev/min and 6 mm/s, respectively.

Research limitations/implications

In this paper, hole wall roughness and tool wear were not considered in the optimization of drilling parameters. The future research work should consider them.

Originality/value

This paper investigates the mechanism of burr formation and thrust force in drilling PCB and then optimizes the drilling parameters to decrease the burr formation and thrust force.

Details

Circuit World, vol. 39 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 October 2014

Amrinder Pal Singh, Manu Sharma and Inderdeep Singh

Damage induced during drilling of polymer matrix composites depends upon torque during drilling. Modeling of torque with feed rate and its control becomes imminent for damage free…

Abstract

Purpose

Damage induced during drilling of polymer matrix composites depends upon torque during drilling. Modeling of torque with feed rate and its control becomes imminent for damage free drilling of composite laminates. Therefore, the purpose of this paper is to construct a transfer function between drilling torque and feed rate based upon experiments. Thereafter, the torque is controlled by using PID controller.

Design/methodology/approach

This paper presents step-by-step procedure to capture complex drilling dynamics of polymer matrix composites in a mathematical model. A glass fiber reinforced plastic (GFRP) composite laminate is drilled at constant feed rate during experimentation. The corresponding time response of torque is recorded. First order, second order and third order transfer functions between torque and feed rate are identified using system identification toolbox of Matlab®. These transfer functions are then converted into state-space models. Experimental verification is performed on GFRP composite laminate. PID controller is designed using Simulink® to track a given reference torque during drilling of polymer matrix composite. The controller is then validated using different reference torque trajectories.

Findings

Good match is observed between torque response from state-space models and experiments. Error analysis based on integral absolute error and integral squared error on experimental and simulated response show that third-order system represents the complex drilling dynamics in a better way than first and second-order systems. PID controller effectively tracks given reference trajectories.

Originality/value

Third-order model between torque and feed rate for drilling of composites not available in literature has been presented. PID controller has previously been applied successfully for drilling of conventional materials, this paper extends implementation of PID torque control for drilling of composites.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 November 2013

Xiaohu Zheng, Dapeng Dong, Lixin Huang, Xibin Wang and Ming Chen

– The paper aims to investigate tool wear mechanism and tool geometry optimization of drilling PCB fixture hole.

Abstract

Purpose

The paper aims to investigate tool wear mechanism and tool geometry optimization of drilling PCB fixture hole.

Design/methodology/approach

An experimental study was carried out to investigate the chip formation and tool wear mechanism of drilling PCB fixture holes. Two types of drill with different types of chip-split groove were used in this study. The performances of these two types of drill bots were evaluated by tool wear and the shapes of chips.

Findings

The chips of drilling fixture holes contain aluminum chips from the cover board, copper chips from the copper foil, discontinuous glass fiber and resin from the CFRP. Feed rate and drilling speed have a great influence on the chip morphology. Abrasive wear of the drill lip is the main reason of the fixture drill bit in drilling PCB, and micro-chipping is observed on the tool nose and chisel edge. The influence of distance between the chip-split groove and drill point center on the axial force and torque is not obvious.

Research limitations/implications

In this paper, hole wall roughness and drilling temperature were not analyzed in the optimization of drilling parameters. The future research work should consider them.

Originality/value

This paper investigated the mechanism of burr formation and tool wear in drilling of PCB fixture holes. Tool geometry was optimized by adding chip-split grooves.

Details

Circuit World, vol. 39 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 June 2011

Babur Ozcelik, Emel Kuram, Erhan Demirbas and Emrah Şik

The purpose of this paper is to investigate the performance of four cutting oils, two different vegetable‐based cutting fluids developed from refined sunflower oil and two…

740

Abstract

Purpose

The purpose of this paper is to investigate the performance of four cutting oils, two different vegetable‐based cutting fluids developed from refined sunflower oil and two commercial types (semi‐synthetic and mineral), for surface roughness during drilling of AISI 304 austenitic stainless steel with HSSE tool.

Design/methodology/approach

L9 (33) orthogonal array was used for the experiment plan. Spindle speed, feed rate and drilling depth were considered as machining parameters.

Findings

Results were evaluated statistically. Mathematical models based on cutting parameters were obtained from regression analyses to predict surface roughness. ANOVA was used to determine the effect of the cutting parameters on the surface roughness. The performance results were found to be better for vegetable‐based cutting oils than that of commercial ones.

Originality/value

The paper reports on the use of refined sunflower oil in drilling stainless steel.

Details

Industrial Lubrication and Tribology, vol. 63 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 34