Search results

1 – 6 of 6
Article
Publication date: 1 December 2003

Prodip Kumar Das, Shohel Mahmud, Syeda Humaira Tasnim and A.K.M. Sadrul Islam

A numerical simulation has been carried out to investigate the buoyancy induced flow and heat transfer characteristics inside a wavy walled enclosure. The enclosure consists of…

Abstract

A numerical simulation has been carried out to investigate the buoyancy induced flow and heat transfer characteristics inside a wavy walled enclosure. The enclosure consists of two parallel wavy and two straight walls. The top and the bottom walls are wavy and kept isothermal. Two straight‐vertical sidewalls are considered adiabatic. Governing equations are discretized using the control volume based finite‐volume method with collocated variable arrangement. Simulation was carried out for a range of surface waviness ratios, λ=0.00‐0.25; aspect ratios, A=0.25‐0.5; and Rayleigh numbers Ra=100‐107 for a fluid having Prandtl number equal to 1.0. Results are presented in the form of local and global Nusselt number distributions, streamlines, and isothermal lines for different values of surface waviness and aspect ratios. For a special case of λ=0 and A=1.0, the average Nusselt number distribution is compared with available reference. The results suggest that natural convection heat transfer is changed considerably when surface waviness changes and also depends on the aspect ratio of the domain. In addition to the heat transfer results, the heat transfer irreversibility in terms of Bejan number (Be) was measured. For a set of selected values of the parameters (λ, A, and Ra), a contour of the Bejan number is presented at the end of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2008

M. Ghassemi, M. Fathabadi and A. Shadaram

The paper's purpose is to consider a numerical study of turbulent natural convection heat transfer inside a triangular‐shaped enclosure.

Abstract

Purpose

The paper's purpose is to consider a numerical study of turbulent natural convection heat transfer inside a triangular‐shaped enclosure.

Design/methodology/approach

In the formulation of governing non‐linear partial differential equations the momentum and energy equations coupled with a kε model are applied to the enclosure. To solve these equations, a commercially available computational fluid dynamic (CFD) code, Fluent, is utilized. In addition a control volume‐based code is developed. Finally, the results are compared.

Findings

Flow and temperature field are presented as a function of aspect ratio (Ar), angle between the sloped and horizontal wall (θ) and the Grashof number (Gr). It is shown that heat transfer is higher for turbulent flow when compared with laminar flow. Meanwhile the results reflect a strong dependency on the angle between two enclosure walls (θ). It is clear from the data that the results obtained by CFD code are similar to that of control volume method.

Research limitations/implications

The case considered is two‐dimensional, the motion is two‐dimensional and steady state, the flow is incompressible, the flow is Boussinesq, and the fluid properties are constant. It is recommended to conduct an experimental test in order to validate the analytical results.

Originality/value

The code enables the prediction of the heat transfer inside an attic‐shaped enclosure. This helps in locating the highest area of heat loss; hence prevention can be implemented for this area.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 January 2012

Sung In Kim, Hamidur Rahman and Ibrahim Hassan

One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the…

Abstract

Purpose

One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer.

Design/methodology/approach

In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non‐uniform inlet temperature have been considered.

Findings

The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on‐design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non‐uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.

Originality/value

The increase of turbine inlet temperature is usually proposed to achieve the higher turbine efficiency and the higher turbine power output. However, it has not been reported how much the heat transfer into the blade tip and casing increases with the increased turbine inlet temperature. This paper investigates the heat transfer distributions on the rotor blade tip and casing, associated with the tip leakage flow under high and low turbine inlet temperatures, as well as non‐uniform temperature distribution.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 May 2023

Samrat Hansda and Swapan K. Pandit

This paper aims to study the impact of convexity and concavity of the vertical borders on double-diffusive mixed convection. In addition, the study of entropy generation is…

Abstract

Purpose

This paper aims to study the impact of convexity and concavity of the vertical borders on double-diffusive mixed convection. In addition, the study of entropy generation is performed. This numerical study has been carried out for different patterns of wavy edges to reveal their effects on heat and mass transfer phenomena.

Design/methodology/approach

Four different flow features are treated by varying the directions of convexity and concavity of the vertical walls. A uniform temperature, as well as concentration distributions, are introduced to the left border while keeping a cold temperature and low concentration for the right border. The horizontal boundaries are in adiabatic condition. The upper border of the chamber is moving in the right direction with an equal speed. The governing Navies–Stokes equations are designed to describe energy and species transport phenomena, and these equations are solved by compact scheme.

Findings

The investigated results are analyzed for various parameters, namely, Prandtl number, Richardson number, thermal Grashof number, Lewis number, Buoyancy ratio and amplitude of the wavy walls. It is observed that the thermal and solutal transfer performance becomes effective with lower Richardson numbers. The results reveal that the concavity and convexity of the side borders of the cabinet can control the thermosolutal performance. It is also observed that among all wavy chambers, Case-4 records maximum thermosolutal transfer rate, while Case-3 attains minimum thermosolutal transfer rate.

Originality/value

This work is an example of solar thermal power conversion, power collection systems, systems of energy deficiency, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 March 2021

Harun Zontul, Hudhaifa Hamzah and Besir Sahin

This paper aims to exhibit a numerical study to analyze the influence of a periodic magnetic source on free convection flow and entropy generation of a ferrofluid in a baffled…

Abstract

Purpose

This paper aims to exhibit a numerical study to analyze the influence of a periodic magnetic source on free convection flow and entropy generation of a ferrofluid in a baffled cavity. In this study, ferrofluid nanofluid was selected due to its ability to image magnetic domain structures within the cavity. The non-uniform magnetic source is considered as a sinusoidal distribution in the vertical direction.

Design/methodology/approach

The finite volume technique is used to evaluate the steady two-dimensional partial differential equations that govern the flow with its corresponding boundary conditions.

Findings

The obtained results indicate that a significant increase in the average Nusselt number can be achieved with the use of the periodic magnetic source instead of a uniform case. In addition, the effectiveness of the adiabatic baffle notably depends on its position and Rayleigh number. Regardless of the values of period and Hartmann numbers, the periodic magnetic source has a higher entropy generation and lower Bejan number than the uniform magnetic source.

Originality/value

The novelty of this research lies in applying a periodic magnetic source on the natural convection of ferrofluids in a baffled cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2024

Umer Farooq, Amara Bibi, Javeria Nawaz Abbasi, Ahmed Jan and Muzamil Hussain

This work aims to concentrate on the mixed convection of the stagnation point flow of ternary hybrid nanofluids towards vertical Riga plate. Aluminum trioxide (Al2O3), silicon…

Abstract

Purpose

This work aims to concentrate on the mixed convection of the stagnation point flow of ternary hybrid nanofluids towards vertical Riga plate. Aluminum trioxide (Al2O3), silicon dioxide (SiO2) and titanium dioxide (TiO2) are regarded as nanoparticles, with water serving as the base fluid. The mathematical model incorporates momentum boundary layer and energy equations. The Grinberg term for the viscous dissipation and the wall parallel Lorentz force coming from the Riga plate are taken into consideration in the context of the energy equation.

Design/methodology/approach

Through the use of appropriate nonsimilar transformations, the governing system is transformed into nonlinear nondimensional partial differential equations (PDEs). The numerical method bvp4c (built-in package for MATLAB) is used in this study to simulate governing equations using the local non-similarity (LNS) approach up to the second truncation level.

Findings

Numerous graphs and numerical tables expound on the physical properties of the nanofluid temperature and velocity profiles. The local Nusselt correlations and the drag coefficient for pertinent parameters have been computed in tabular form. Additionally, the temperature profile drops while the velocity profile increases when the mixed convection parameter is included to oppose the flow.

Originality/value

The fundamental goal of this work is to comprehend how ternary nanofluids move towards a vertical Riga plate in a mixed convective domain with stagnation point flow.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 6 of 6