Search results

1 – 2 of 2
Article
Publication date: 1 March 2008

V. Rizov and A. Mladensky

This article presents an approach for assessing the damage resistance of H30 rigid foam subjected to local static loading. The main goal of the experimental part of this paper is…

Abstract

This article presents an approach for assessing the damage resistance of H30 rigid foam subjected to local static loading. The main goal of the experimental part of this paper is to obtain the loaddisplacement response of foam beam specimens under static indentation by steel cylindrical indentors for both loading (indentation) and unloading stages. The instant residual dent magnitude is also measured in the testing. The nonlinear character of the mechanical behavior and the formation of a residual dent (after unloading) are attributed to local crushing of the foam in the zone directly under the indentation area. A visual inspection of a lateral surface of the foam specimens after indentation tests revealed that the local damage underneath the indentor consists of crushed and highly compacted foam, while the rest of the specimen is almost undeformed. A two‐dimensional numerical model is developed to simulate the static indentation response using the ABAQUS computer code. No overall bending of the foam specimens is assumed. The finite element modeling procedure takes into account both physical and geometrical non‐linearities. In order to simulate the plastic part of the response, the model employs the *CRUSHABLE FOAM and *CRUSHABLE FOAM HARDENING options. The modeling procedure is capable of analyzing indentation as well as unloading of foam beam specimens. Thus, the instant residual dent can be predicted. Results generated by this model exhibit good correlation with indentation tests data, thus substantiating its validity.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 2009

V. Rizov and A. Mladensky

Mode I static fracture behavior of polymer composites is studied using the tapered double cantilever beam test method. A non‐linear three‐dimensional finite element model is…

139

Abstract

Mode I static fracture behavior of polymer composites is studied using the tapered double cantilever beam test method. A non‐linear three‐dimensional finite element model is developed to analyze the test data. The fracture toughness is evaluated using a J‐integral approach. A non‐uniform distribution of the J‐integral value along the crack front is obtained with maximum at the mid‐plane of the specimen. It is shown that taking into account the damage induced non‐linear behavior improves the fracture toughness. This is explained with increased strain energy dissipation as a result of the non‐linear behavior.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 2 of 2