Search results

1 – 10 of 88
Open Access
Article
Publication date: 30 May 2023

Tommaso Stomaci, Francesco Buonamici, Giacomo Gelati, Francesco Meucci and Monica Carfagni

Left atrial appendage occlusion (LAAO) is a structural interventional cardiology procedure that offers several possibilities for the application of additive manufacturing…

Abstract

Purpose

Left atrial appendage occlusion (LAAO) is a structural interventional cardiology procedure that offers several possibilities for the application of additive manufacturing technologies. The literature shows a growing interest in the use of 3D-printed models for LAAO procedure planning and occlusion device choice. This study aims to describe a full workflow to create a 3D-printed LAA model for LAAO procedure planning.

Design/methodology/approach

The workflow starts with the patient’s computed tomography diagnostic image selection. Segmentation in a commercial software provides initial geometrical models in standard tessellation language (STL) format that are then preprocessed for print in dedicated software. Models are printed using a commercial stereolithography machine and postprocessing is performed.

Findings

Models produced with the described workflow have been used at the Careggi Hospital of Florence as LAAO auxiliary planning tool in 10 cases of interest, demonstrating a good correlation with state-of-the-art software for device selection and improving the surgeon’s understanding of patient anatomy and device positioning.

Originality/value

3D-printed models for the LAAO planning are already described in the literature. The novelty of the article lies in the detailed description of a robust workflow for the creation of these models. The robustness of the method is demonstrated by the coherent results obtained for the 10 different cases studied.

Open Access
Book part
Publication date: 1 May 2019

Nils O.E. Olsson, Ali Shafqat, Emrah Arica and Andreas Økland

The purpose of this paper is to study the introduction of 3D-printing of concrete in the construction sector.

Abstract

Purpose

The purpose of this paper is to study the introduction of 3D-printing of concrete in the construction sector.

Design/Methodology/Approach

A survey was conducted to collect professional view on ongoing innovations in the construction sector, including 3D-printing. Participants were selected among the members of Norwegian networks for project and construction management research.

Findings

The survey highlighted effective leadership, collaboration with partners and industry-academia collaboration as primary enablers of innovation. Few of the respondents to the survey have used 3D-printing technologies.

Research Limitations/Implications

It is difficult to obtain representative samples in this type of research, including this study. The study can be seen as a snapshot of attitudes in the sector.

Practical Implications

3D-printing appear as a potentially interesting technology, especially for unstandardized construction components. Further work is needed to materialise the expectation for technological development in the construction sector.

Originality/Value

Most research on 3D-printing has focused on demonstrating technical potential. This study adds a practitioners’ perspective, with a large dose of pragmatism.

Details

10th Nordic Conference on Construction Economics and Organization
Type: Book
ISBN: 978-1-83867-051-1

Keywords

Open Access
Article
Publication date: 8 March 2022

Andrea Spaggiari and Filippo Favali

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the…

Abstract

Purpose

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the maximum dimension of the 3D printed parts, which is typically limited, by joining the parts with structural adhesive, without losing strength and stiffness and keeping the major asset of polymeric 3 D printing: freedom of shape of the system and low cost of parts.

Design/methodology/approach

The materials used in the paper are the following. The adhesive considered is a commercial inexpensive acrylic, quite similar to superglue, applicable with almost no surface preparation and fast curing, as time constraint is one of the key problems that affects industrial adhesive applications. The 3D printed parts were in acrylonitrile butadiene styrene (ABS), obtained with a Fortus 250mc FDM machine, from Stratasys. The work first compares flat overlap joint with joints designed to permit mechanical interlocking of the adherends and then to a monolithic component with the same geometry. Single lap, joggle lap and double lap joints are the configurations experimentally characterized following a design of experiment approach.

Findings

The results show a failure in the substrate, due to the low strength of the polymeric adherends for the first batch of typical bonded configurations, single lap, joggle lap and double lap. The central bonded area, with an increased global thickness, never does fail, and the adhesive is able to transfer the load both with and without mechanical interlocking. An additional set of scarf joints was also tested to promote adhesive failure as well as to retrieve the adhesive strength in this application. The results shows that bonding of polymeric AM parts is able to express its full potential compared with a monolithic solution even though the joint fails prematurely in the adherend due to the bending stresses and the notches present in the lap joints.

Research limitations/implications

Because of the 3D printed polymeric material adopted, the results may be generalized only when the elastic properties of the adherends and of the adhesive are similar, so it is not possible to extend the findings of the work to metallic additive manufactured components.

Practical implications

The paper shows that the adhesives are feasible way to expand the potentiality of 3 D printed equipment to obtain larger parts with equivalent mechanical properties. The paper also shows that the scarf joint, which fails in the adhesive first, can be used to extract information about the adhesive strength, useful for the designers which have to combine adhesive and additive manufactured polymeric parts.

Originality/value

To the best of the researchers’ knowledge, there are scarce quantitative information in technical literature about the performance of additive manufactured parts in combination with structural adhesives and this work provides an insight on this interesting subject. This manuscript provides a feasible way of using rapid prototyping techniques in combination with adhesive bonding to fully exploit the additive manufacturing capability and to create large and cost-effective 3 D printed parts.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 24 February 2021

Petra Bosch-Sijtsema, Christina Claeson-Jonsson, Mikael Johansson and Mattias Roupe

This paper aims to focus on 11 digital technologies (i.e. building information modeling, artificial intelligence and machine learning, 3D scanning, sensors, robots/automation…

6271

Abstract

Purpose

This paper aims to focus on 11 digital technologies (i.e. building information modeling, artificial intelligence and machine learning, 3D scanning, sensors, robots/automation, digital twin, virtual reality, 3D printing, drones, cloud computing and self-driving vehicles) that are portrayed in future trend reports and hype curves. The study concentrates on the current usage and knowledge of digital technologies in the Swedish architecture, engineering and construction (AEC) industry to gain an insight in the possible expectations and future trajectory of these digital technologies.

Design/methodology/approach

The study applies an abductive approach which is based on three different types of methods. These methods are a literature and document study which focused on 11 digital technologies, two workshops with industry (13 participants) and an online survey (N = 84).

Findings

The paper contributes to a current state analysis of the Swedish AEC industry concerning digital technologies and discusses the trajectory of these technologies for the AEC industry. The paper identifies hype factors, in which the knowledge of a digital technology is related to its usage. From the hype factors, four zones that show different stages of digital technology usage and maturity in the industry are induced.

Originality/value

The contribution of the paper is twofold. The paper shows insight into opportunities, the current barriers, use and knowledge of digital technologies for the different actors in the AEC industry. Furthermore, the study shows that the AEC industry is behind the traditional Gartner hype curves and contributes with defining four zones for digital technologies for the Swedish AEC industry: confusion, excitement, experimentation and integration.

Details

Construction Innovation , vol. 21 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 27 June 2019

Younss Ait Mou and Muammer Koc

This paper aims to report on the findings of an investigation to compare three different three-dimensional printing (3DP) or additive manufacturing technologies [i.e. fused…

1451

Abstract

Purpose

This paper aims to report on the findings of an investigation to compare three different three-dimensional printing (3DP) or additive manufacturing technologies [i.e. fused deposition modeling (FDM), stereolithography (SLA) and material jetting (MJ)] and four different equipment (FDM, SLA, MJP 2600 and Object 260) in terms of their dimensional process capability (dimensional accuracy and surface roughness). It provides a comprehensive and comparative understanding about the level of attainable dimensional accuracy, repeatability and surface roughness of commonly used 3DP technologies. It is expected that these findings will help other researchers and industrialists in choosing the right technology and equipment for a given 3DP application.

Design/methodology/approach

A benchmark model of 5 × 5 cm with several common and challenging features, such as around protrusion and hole, flat surface, micro-scale ribs and micro-scale long channels was designed and printed repeatedly using four different equipment of three different 3DP technologies. The dimensional accuracy of the printed models was measured using non-contact digital measurement methods. The surface roughness was evaluated using a digital profilometer. Finally, the surface quality and edge sharpness were evaluated under a reflected light ZEISS microscope with a 50× magnification objective.

Findings

The results show that FDM technology with the used equipment results in a rough surface and loose dimensional accuracy. The SLA printer produced a smoother surface, but resulted in the distortion of thin features (<1 mm). MJ printers, on the other hand, produced comparable surface roughness and dimensional accuracy. However, ProJet MJP 3600 produced sharper edges when compared to the Objet 260 that produced round edges.

Originality/value

This paper, for the first time, provides a comprehensive comparison of three different commonly used 3DP technologies in terms of their dimensional capability and surface roughness without farther post-processing. Thus, it offers a reliable guideline for design consideration and printer selection based on the target application.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 30 June 2020

James I. Novak and Jennifer Loy

In response to shortages in personal protective equipment (PPE) during the COVID-19 pandemic, makers, community groups and manufacturers around the world utilised 3D printing to…

Abstract

In response to shortages in personal protective equipment (PPE) during the COVID-19 pandemic, makers, community groups and manufacturers around the world utilised 3D printing to fabricate items, including face shields and face masks for healthcare workers and the broader community. In reaction to both local and global needs, numerous designs emerged and were shared online. In this paper, 37 face shields and 31 face masks suitable for fused filament fabrication were analysed from a fabrication perspective, documenting factors such as filament use, time to print and geometric qualities. 3D print times for similar designs varied by several hours, meaning some designs could be produced in higher volumes. Overall, the results show that face shields were approximately twice as fast to 3D print compared to face masks and used approximately half as much filament. Additionally, a face shield typically required 1.5 parts to be 3D printed, whereas face masks required five 3D printed parts. However, by quantifying the print times, filament use, 3D printing costs, part dimensions, number of parts and total volume of each design, the wide variations within each product category could be tracked and evaluated. This data and objective analysis will help makers, manufacturers, regulatory bodies and researchers consolidate the 3D printing response to COVID-19 and optimise the ongoing strategy to combat supply chain shortages now and in future healthcare crises.

Open Access
Article
Publication date: 13 May 2020

James I. Novak and Jennifer Loy

The COVID-19 pandemic significantly increased demand for medical and protective equipment by frontline health workers, as well as the general community, causing the supply chain…

Abstract

The COVID-19 pandemic significantly increased demand for medical and protective equipment by frontline health workers, as well as the general community, causing the supply chain to stretch beyond capacity, an issue further heightened by geographical and political lockdowns. Various 3D printing technologies were quickly utilised by businesses, institutions and individuals to manufacture a range of products on-demand, close to where they were needed. This study gathered data about 91 3D printed projects initiated prior to April 1, 2020, as the virus spread globally. It found that 60% of products were for personal protective equipment, of which 62% were 3D printed face shields. Fused filament fabrication was the most common 3D print technology used, and websites were the most popular means of centralising project information. The project data provides objective, quantitative insight balanced with qualitative critical review of the broad trends, opportunities and challenges that could be used by governments, health and medical bodies, manufacturing organisations and the 3D printing community to streamline the current response, as well as plan for future crises using a distributed, flexible manufacturing approach.

Open Access
Article
Publication date: 13 June 2019

Patrick Holzmann, Robert J. Breitenecker and Erich J. Schwarz

The purpose of this paper is to analyze the business models that 3D printer manufacturers apply to commercialize their technologies. The authors investigate these business models…

7602

Abstract

Purpose

The purpose of this paper is to analyze the business models that 3D printer manufacturers apply to commercialize their technologies. The authors investigate these business models and analyze whether there are business model patterns. The paper describes the gestalt of the business model patterns and discusses differences and similarities.

Design/methodology/approach

The authors review the literatures on business models and 3D printing technology. The authors apply a componential business model approach and carry out an in-depth analysis of the business models of 48 3D printer manufacturers in Europe and North America. The authors develop a framework focusing on value proposition, value creation and value capture components. Cluster analysis is used to identify business model patterns.

Findings

The results indicate that there are two distinct business model patterns in the industry. The authors termed these patterns the “low-cost online business model” and the “technology expert business model.” The results demonstrate that there is a relationship between business model and technology. The identified patterns are independent of age, company size and country of origin.

Research limitations/implications

The empirical results complement and extend existing literature on business models. The authors contribute to the discussion on business models in the context of novel technology. The technology seems to influence the gestalt of the business model. The sample is limited to European and North American companies and the analysis is based on secondary data.

Originality/value

This is the first empirical study on the business models of 3D printer manufacturers. The authors apply an original mixed-methods approach and develop a framework that can function as a starting point for future research. 3D printer manufacturers can use the identified business model patterns as blueprints to reduce the risk of failure or as a starting point for business model innovation.

Details

Journal of Manufacturing Technology Management, vol. 31 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 8 December 2020

Maximilian Kunovjanek and Christian Wankmüller

The COVID-19 pandemic caused global supply disruptions and shortages that resulted in countries battling over desperately needed (medical) supplies. In this mayhem, additive…

6001

Abstract

Purpose

The COVID-19 pandemic caused global supply disruptions and shortages that resulted in countries battling over desperately needed (medical) supplies. In this mayhem, additive manufacturing (AM) provided relief to the strained healthcare systems and manufacturing environments by offering an alternative way to rapidly produce desired products. This study sheds light on how AM was used globally in response to the COVID-19 pandemic.

Design/methodology/approach

The study undertakes a systematic and content-centric review of 289 additively manufactured products made in response to the COVID-19 pandemic. Additionally, quantitative frequency-based text mining and various descriptive analyses were applied that support the investigation of the subject under regard.

Findings

Results show that AM was primarily used in the medical domain for the production of standard medical items, such as personal protective equipment (PPE) but also for non-obvious and new applications (e.g. swab simulator, rapid diagnostic kits, etc.). Also, certain paradigm shifts were observed, as the effective move to mass production and the mitigation of problems related to certification and standardization emerged as prominent management prospects. Nevertheless, various obstacles arose and remained in the path of lasting AM success, especially with respect to print quality, raw material supply and technological versatility.

Originality/value

Due to the actuality of the topic under investigation, no comparable study has so far been conducted. The systematic review provides a conclusive and precise foundation for further analysis and subsequent discussions. Additionally, no comparable study mapping such a wide array of different AM products exists today.

Details

Journal of Manufacturing Technology Management, vol. 32 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of 88