Search results

1 – 4 of 4
Content available
Article
Publication date: 26 October 2010

787

Abstract

Details

Journal of Manufacturing Technology Management, vol. 21 no. 8
Type: Research Article
ISSN: 1741-038X

Open Access
Article
Publication date: 16 March 2022

Liang Xu, Sheng Jin, Bolin Li and Jiaming Wu

This study aims to make full use of the advantages of connected and autonomous vehicles (CAVs) and dedicated CAV lanes to ensure all CAVs can pass intersections without stopping.

1042

Abstract

Purpose

This study aims to make full use of the advantages of connected and autonomous vehicles (CAVs) and dedicated CAV lanes to ensure all CAVs can pass intersections without stopping.

Design/methodology/approach

The authors developed a signal coordination model for arteries with dedicated CAV lanes by using mixed integer linear programming. CAV non-stop constraints are proposed to adapt to the characteristics of CAVs. As it is a continuous problem, various situations that CAVs arrive at intersections are analyzed. The rules are discovered to simplify the problem by discretization method.

Findings

A case study is conducted via SUMO traffic simulation program. The results show that the efficiency of CAVs can be improved significantly both in high-volume scenario and medium-volume scenario with the plan optimized by the model proposed in this paper. At the same time, the progression efficiency of regular vehicles is not affected significantly. It is indicated that full-scale benefits of dedicated CAV lanes can only be achieved with signal coordination plans considering CAV characteristics.

Originality/value

To the best of the authors’ knowledge, this is the first research that develops a signal coordination model for arteries with dedicated CAV lanes.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 16 May 2024

Huifang Li and Xinsheng Pang

The forest products processing industry is a key component of the forestry economy, and the level of companies’ operating efficiency directly affects its profitability and market…

Abstract

Purpose

The forest products processing industry is a key component of the forestry economy, and the level of companies’ operating efficiency directly affects its profitability and market competitiveness.

Design/methodology/approach

In order to deeply study the operation status of forest product processing industry, this paper takes the panel data of 70 listed forest product processing companies from 2015 to 2022 as the basis, and adopts BBC, CCR and DEA-Malmquist models to measure the operating efficiency of these companies. Meanwhile, the Tobit model is applied to deeply explore the impact of innovation input on operating efficiency.

Findings

The results of the paper show that: (1) the overall operating efficiency of listed forest product processing companies performs well, and the improvement of technology level promotes the growth of total factor productivity; (2) innovation input plays a significant positive role in listed forest product processing companies, which positively affects the operating efficiency.

Practical implications

A scientific and reasonable evaluation of the operating efficiency of listed forest product companies is of great practical significance to the development of the forestry industry The study of forest product processing industry is of key significance to the social economy.

Originality/value

This paper explores the improvement of production and operation efficiency of forest products processing enterprises for the purpose of in-depth analysis of the current situation of China's forest products processing enterprises, which is conducive to improving the innovation and operation efficiency of China's forest products processing enterprises, and realizing the high-quality development of China's forest products processing industry.

Details

Forestry Economics Review, vol. 6 no. 1
Type: Research Article
ISSN: 2631-3030

Keywords

Open Access
Article
Publication date: 7 June 2021

Tamoor Khan, Jiangtao Qiu, Ameen Banjar, Riad Alharbey, Ahmed Omar Alzahrani and Rashid Mehmood

The purpose of this paper is to assess the impacts on production of five fruit crops from 1961 to 2018 of energy use, CO2 emissions, farming areas and the labor force in China.

1933

Abstract

Purpose

The purpose of this paper is to assess the impacts on production of five fruit crops from 1961 to 2018 of energy use, CO2 emissions, farming areas and the labor force in China.

Design/methodology/approach

This analysis applied the autoregressive distributed lag-bound testing (ARDL) approach, Granger causality method and Johansen co-integration test to predict long-term co-integration and relation between variables. Four machine learning methods are used for prediction of the accuracy of climate effect on fruit production.

Findings

The Johansen test findings have shown that the fruit crop growth, energy use, CO2 emissions, harvested land and labor force have a long-term co-integration relation. The outcome of the long-term use of CO2 emission and rural population has a negative influence on fruit crops. The energy consumption, harvested area, total fruit yield and agriculture labor force have a positive influence on six fruit crops. The long-run relationships reveal that a 1% increase in rural population and CO2 will decrease fruit crop production by −0.59 and −1.97. The energy consumption, fruit harvested area, total fruit yield and agriculture labor force will increase fruit crop production by 0.17%, 1.52%, 1.80% and 4.33%, respectively. Furthermore, uni-directional causality is correlated with the growth of fruit crops and energy consumption. Also, the results indicate that the bi-directional causality impact varies from CO2 emissions to agricultural areas to fruit crops.

Originality/value

This study also fills the literature gap in implementing ARDL for agricultural fruits of China, used machine learning methods to examine the impact of climate change and to explore this important issue.

Details

International Journal of Climate Change Strategies and Management, vol. 13 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Access

Only content I have access to

Year

Content type

1 – 4 of 4