Search results

1 – 8 of 8
Content available
Article
Publication date: 1 April 2004

454

Abstract

Details

Pigment & Resin Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 1 April 1999

44

Abstract

Details

Pigment & Resin Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 1 September 1998

87

Abstract

Details

Assembly Automation, vol. 18 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 22 May 2023

Peter G. Kelly, Benjamin H. Gallup and Joseph D. Roy-Mayhew

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on…

1180

Abstract

Purpose

Many additively manufactured parts suffer from reduced interlayer strength. This anisotropy is necessarily tied to the orientation during manufacture. When individual features on a part have conflicting optimal orientations, the part is unavoidably compromised. This paper aims to demonstrate a strategy in which conflicting features can be functionally separated into “co-parts” which are individually aligned in an optimal orientation, selectively reinforced with continuous fiber, printed simultaneously and, finally, assembled into a composite part with substantially improved performance.

Design/methodology/approach

Several candidate parts were selected for co-part decomposition. They were printed as standard fused filament fabrication plastic parts, parts reinforced with continuous fiber in one plane and co-part assemblies both with and without continuous fiber reinforcement (CFR). All parts were loaded until failure. Additionally, parts representative of common suboptimally oriented features (“unit tests”) were similarly printed and tested.

Findings

CFR delivered substantial improvement over unreinforced plastic-only parts in both standard parts and co-part assemblies, as expected. Reinforced parts held up to 2.5x the ultimate load of equivalent plastic-only parts. The co-part strategy delivered even greater improvement, particularly when also reinforced with continuous fiber. Plastic-only co-part assemblies held up to 3.2x the ultimate load of equivalent plastic only parts. Continuous fiber reinforced co-part assemblies held up to 6.4x the ultimate load of equivalent plastic-only parts. Additionally, the thought process behind general co-part design is explored and a vision of simulation-driven automated co-part implementation is discussed.

Originality/value

This technique is a novel way to overcome one of the most common challenges preventing the functional use of additively manufactured parts. It delivers compelling performance with continuous carbon fiber reinforcement in 3D printed parts. Further study could extend the technique to any anisotropic manufacturing method, additive or otherwise.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 December 2003

73

Abstract

Details

Pigment & Resin Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 1 May 2009

81

Abstract

Details

Journal of Consumer Marketing, vol. 26 no. 3
Type: Research Article
ISSN: 0736-3761

Content available
Article
Publication date: 20 March 2009

Bob Duckett

210

Abstract

Details

Library Review, vol. 58 no. 3
Type: Research Article
ISSN: 0024-2535

Keywords

Open Access
Article
Publication date: 5 September 2018

Brian Cody, Wolfgang Loeschnig and Alexander Eberl

The work described below compares three very different residential typologies in terms of their energy performance in operation. The purpose of this paper is to identify the…

2174

Abstract

Purpose

The work described below compares three very different residential typologies in terms of their energy performance in operation. The purpose of this paper is to identify the influence of building typologies and corresponding urban morphologies on operational energy demand and the potential for building integrated energy production.

Design/methodology/approach

Two of the typologies studied are apartment buildings while the third comprises single-family homes located on small plots. An important factor under consideration is the insertion into the respective urban design configuration so that mutual shading of the buildings and the ensuing impact on energy performance is evaluated. Heating and cooling demands, as well as the potential for building-integrated electricity production were investigated for four different European climates in a dynamic thermal simulation environment.

Findings

The results show that the investigated apartment buildings have a lower operational energy demand than the single-family home in all climates. This advantage is most pronounced in cool climate conditions. At the same time the investigated single-family home has the highest potential for building integrated renewable energy production in all climates. This advantage is most pronounced in low latitudes.

Originality/value

The study builds up on generic buildings that are based on a common urban grid and are easily comparable and scalable into whole city districts. Still, these buildings are planned into such detail, that they provide fully functional floor plans and comply with national building regulations. This approach allows us to draw conclusions on the scale of individual buildings and at an urban scale at the same time.

Details

Smart and Sustainable Built Environment, vol. 7 no. 3/4
Type: Research Article
ISSN: 2046-6099

Keywords

Access

Only content I have access to

Year

Content type

1 – 8 of 8