Search results

1 – 10 of 42
Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 26 July 2021

Weifei Hu, Tongzhou Zhang, Xiaoyu Deng, Zhenyu Liu and Jianrong Tan

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant…

12744

Abstract

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 1 August 2023

Johannes Schneider and Andreas Strohmayer

The purpose of this study is to develop and describe a process which can be applied to develop new methods in the context of preliminary aircraft sizing in a successful and…

Abstract

Purpose

The purpose of this study is to develop and describe a process which can be applied to develop new methods in the context of preliminary aircraft sizing in a successful and efficient way.

Design/methodology/approach

The tasks to development new aircraft sizing methods are systematically analyzed. In particular, repeating and nonrepeating tasks and common or unique tasks. Then ordered in a sequence and described generically.

Findings

A development process for new aircraft design methods which are necessary for new technologies or configurations is introduced and explained step by step.

Practical implications

Introducing the capability to deal with new technologies or configurations, aircraft design tools or aircraft concepts requires new sizing methods.

Originality/value

The paper presents a systematic approach which can be used to develop a great amount of new sizing methods with a comparable usability and quality standard in an efficient and effective way.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 7 April 2015

Yujun Cao, Xin Li, Zhixiong Zhang and Jianzhong Shang

This paper aims to clarify the predicting and compensating method of aeroplane assembly. It proposes modeling the process of assembly. The paper aims to solve the precision

1480

Abstract

Purpose

This paper aims to clarify the predicting and compensating method of aeroplane assembly. It proposes modeling the process of assembly. The paper aims to solve the precision assembly of aeroplane, which includes predicting the assembly variation and compensating the assembly errors.

Design/methodology/approach

The paper opted for an exploratory study using the state space theory and small displacement torsor theory. The assembly variation propagation model is established. The experiment data are obtained by a real small aeroplane assembly process.

Findings

The paper provides the predicting and compensating method for aeroplane assembly accuracy.

Originality/value

This paper fulfils an identified need to study how the assembly variation propagates in the assembly process.

Details

Assembly Automation, vol. 35 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 27 March 2023

Clinton Ohis Aigbavboa, Andrew Ebekozien and Nompumelelo Mkhize

Aerospace is a demanding technological and industrial sector. Several regulations and policies via innovative digital transformation have been integrated to impact production…

4281

Abstract

Purpose

Aerospace is a demanding technological and industrial sector. Several regulations and policies via innovative digital transformation have been integrated to impact production systems and supply chains, including safety measures. Studies demonstrated that the Fourth Industrial Revolution (4IR) technologies could enhance productivity growth and safety measures. The 4IR role in influencing airlines’ growth is yet to receive in-depth studies in South Africa. Thus, this study aims to investigate the role of 4IR technologies in influencing airlines’ growth in South Africa.

Design/methodology/approach

This research used a qualitative research method. Primary data were compiled via 56 face-to-face semi-structured interviews with major stakeholders. The study achieved saturation. A thematic method was used to analyse the collected data.

Findings

Findings reveal the nine major factors influencing South African airlines’ growth in the 4IR era. This includes investment in ergonomics applications and research, governance is driven by 4IR, collaboration and incorporation of 4IR concepts, partnership with drone technology and high precision and efficiency with 4IR. Others are reskilling and upskilling, investment in 4IR software, policies to promote 4IR usage in the industry and policies to reduce human interface.

Originality/value

Understanding the relative significance of 4IR technologies’ role in airlines’ growth can assist critical stakeholders in promoting innovative policies and regulations tailored towards digitalised aerospace. Thus, the study contributes to strategies to improve digital innovation, airline growth and safety as components of the air travel demands in South Africa.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 23 January 2023

Junshan Hu, Jie Jin, Yueya Wu, Shanyong Xuan and Wei Tian

Aircraft structures are mainly connected by riveting joints, whose quality and mechanical performance are directly determined by vertical accuracy of riveting holes. This paper…

Abstract

Purpose

Aircraft structures are mainly connected by riveting joints, whose quality and mechanical performance are directly determined by vertical accuracy of riveting holes. This paper proposed a combined vertical accuracy compensation method for drilling and riveting of aircraft panels with great variable curvatures.

Design/methodology/approach

The vertical accuracy compensation method combines online and offline compensation categories in a robot riveting and drilling system. The former category based on laser ranging is aimed to correct the vertical error between actual and theoretical riveting positions, and the latter based on model curvature is used to correct the vertical error caused by the approximate plane fitting in variable-curvature panels.

Findings

The vertical accuracy compensation method is applied in an automatic robot drilling and riveting system. The result reveals that the vertical accuracy error of drilling and riveting is within 0.4°, which meets the requirements of the vertical accuracy in aircraft assembly.

Originality/value

The proposed method is suitable for improving the vertical accuracy of drilling and riveting on panels or skins of aerospace products with great variable curvatures without introducing extra measuring sensors.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 26 April 2022

Jingfeng Xie, Jun Huang, Lei Song, Jingcheng Fu and Xiaoqiang Lu

The typical approach of modeling the aerodynamics of an aircraft is to develop a complete database through testing or computational fluid dynamics (CFD). The database will be huge…

2085

Abstract

Purpose

The typical approach of modeling the aerodynamics of an aircraft is to develop a complete database through testing or computational fluid dynamics (CFD). The database will be huge if it has a reasonable resolution and requires an unacceptable CFD effort during the conceptional design. Therefore, this paper aims to reduce the computing effort required via establishing a general aerodynamic model that needs minor parameters.

Design/methodology/approach

The model structure was a preconfigured polynomial model, and the parameters were estimated with a recursive method to further reduce the calculation effort. To uniformly disperse the sample points through each step, a unique recursive sampling method based on a Voronoi diagram was presented. In addition, a multivariate orthogonal function approach was used.

Findings

A case study of a flying wing aircraft demonstrated that generating a model with acceptable precision (0.01 absolute error or 5% relative error) costs only 1/54 of the cost of creating a database. A series of six degrees of freedom flight simulations shows that the model’s prediction was accurate.

Originality/value

This method proposed a new way to simplify the model and recursive sampling. It is a low-cost way of obtaining high-fidelity models during primary design, allowing for more precise flight dynamics analysis.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 11 October 2018

SungKwan Ku, Hojong Baik and Taehyoung Kim

The surveillance equipment is one of the most important parts for current air traffic control systems. It provides aircraft position and other relevant information including…

1046

Abstract

Purpose

The surveillance equipment is one of the most important parts for current air traffic control systems. It provides aircraft position and other relevant information including flight parameters. However, the existing surveillance equipment has certain position errors between true and detected positions. Operators must understand and account for the characteristics on magnitude and frequency of the position errors in the surveillance systems because these errors can influence the safety of aircraft operation. This study aims to develop the simulation model for analysis of these surveillance position errors to improve the safety of aircrafts in airports.

Design/methodology/approach

This study investigates the characterization of the position errors observed in airport surface detection equipment of an airport ground surveillance system and proposes a practical method to numerically reproduce the characteristics of the errors.

Findings

The proposed approach represents position errors more accurately than an alternative simple approach. This study also discusses the application of the computational results in a microscopic simulation modeling environment.

Practical implications

The surveillance error is analyzed from the radar trajectory data, and a random generator is configured to implement these data. These data are used in the air transportation simulation through an application programing interface, which can be applied to the aircraft trajectory data in the simulation. Subsequently, additionally built environment data are used in the actual simulation to obtain the results from the simulation engine.

Originality/value

The presented surveillance error analysis and simulation with its implementation plan are expected to be useful for air transportation safety simulations.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 13 April 2022

Shuanggao Li, Zhichao Huang, Qi Zeng and Xiang Huang

Aircraft assembly is the crucial part of aircraft manufacturing, and to meet the high-precision and high-efficiency requirements, cooperative measurement consisting of multiple…

Abstract

Purpose

Aircraft assembly is the crucial part of aircraft manufacturing, and to meet the high-precision and high-efficiency requirements, cooperative measurement consisting of multiple measurement instruments and automatic assisted devices is being adopted. To achieve the complete data of all assembly features, measurement devices need to be placed at different positions, and the flexible and efficient transfer relies on Automated Guided Vehicles (AGVs) and robots in the large-size space and close range. This paper aims to improve the automatic station transfer in accuracy and flexibility.

Design/methodology/approach

A transferring system with Light Detection and Ranging (LiDAR) and markers is established. The map coupling for navigation is optimized. Markers are distributed according to the accumulated uncertainties. The path planning method applied to the collaborative measurement is proposed for better accuracy. The motion planning method is optimized for better positioning accuracy.

Findings

A transferring system is constructed and the system is verified in the laboratory. Experimental results show that the proposed system effectively improves positioning accuracy and efficiency, which improves the station transfer for the cooperative measurement.

Originality/value

A Transferring system for collaborative measurement is proposed. The optimized navigation method extends the application of visual markers. With this system, AGV is capable of the cooperative measurement of large aircraft structural parts.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 42