Search results

1 – 4 of 4
Article
Publication date: 18 August 2023

Deanna Craig and M.Z. Naser

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply…

Abstract

Purpose

The extreme nature of fire makes structural fire engineering unique in that the load actions dictating design are intense and neither geographically nor seasonally bound. Simply, fire can break out anywhere, at any time and for any number of reasons. Despite the apparent need, the fire design of structures still relies on expensive fire tests, complex finite element simulations and outdated procedures with little room for innovation. This paper aims to discuss the aforementioned issues.

Design/methodology/approach

This primer highlights the latest state of the art in this area with regard to performance-based design in fire structural engineering. In addition, this short review also presents a series of examples of successful implementation of performance-based fire design of structures from around the world.

Findings

A comparison between global efforts clearly shows the advances put forth by European and Oceanian efforts as opposed to the rest of the world. In addition, it can be clearly seen that most performance-based fire designs are related to steel and composite structures.

Originality/value

In one study, this paper presents a concise and global view to performance-based fire design of structures from success stories from around the world.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 21 May 2024

Jun Tian, Xungao Zhong, Xiafu Peng, Huosheng Hu and Qiang Liu

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between…

Abstract

Purpose

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between the image features and the robot moving. While some of the drawbacks associated with most visual servoing (VS) approaches include the vision–motor mapping computation and the robots’ dynamic performance, the problem of designing optimal and more effective VS systems still remains challenging. Thus, the purpose of this paper is to propose and evaluate the VS method for robots in an unstructured environment.

Design/methodology/approach

This paper presents a new model-free VS control of a robotic manipulator, for which an adaptive estimator aid by network learning is proposed using online estimation of the vision–motor mapping relationship in an environment without the knowledge of statistical noise. Based on the adaptive estimator, a model-free VS schema was constructed by introducing an active disturbance rejection control (ADRC). In our schema, the VS system was designed independently of the robot kinematic model.

Findings

The various simulations and experiments were conducted to verify the proposed approach by using an eye-in-hand robot manipulator without calibration and vision depth information, which can improve the autonomous maneuverability of the robot and also allow the robot to adapt its motion according to the image feature changes in real time. In the current method, the image feature trajectory was stable in the camera field range, and the robot’s end motion trajectory did not exhibit shock retreat. The results showed that the steady-state errors of image features was within 19.74 pixels, the robot positioning was stable within 1.53 mm and 0.0373 rad and the convergence rate of the control system was less than 7.21 s in real grasping tasks.

Originality/value

Compared with traditional Kalman filtering for image-based VS and position-based VS methods, this paper adopts the model-free VS method based on the adaptive mapping estimator combination with the ADRC controller, which is effective for improving the dynamic performance of robot systems. The proposed model-free VS schema is suitable for robots’ grasping manipulation in unstructured environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 May 2024

Subhamitra Patra and Gourishankar S. Hiremath

This study aims to measure the degree of volatility comovement between stock market liquidity and informational efficiency across Asia, Europe, North-South America, Africa, and…

Abstract

Purpose

This study aims to measure the degree of volatility comovement between stock market liquidity and informational efficiency across Asia, Europe, North-South America, Africa, and the Pacific Ocean over three decades. In particular, the authors analyze the extent of the time-varying nexus between different aspects of stock market liquidity and multifractal scaling properties of the stock return series across various regions and diversified market conditions. This study further investigates several factors altering the degree of dynamic conditional correlations (DCCs) between the efficiency and liquidity of the domestic stock markets.

Design/methodology/approach

The study measures five aspects of stock market liquidity – tightness, depth, breadth, immediacy, and adjusted immediacy. The authors evaluate the multifractal scaling properties of the stock return series to measure the level of stock market efficiency across the regions and diversified market conditions. The study uses the dynamic conditional correlation-multivariate generalized autoregressive conditional heteroscedasticity framework to quantify the degree of volatility comovement between liquidity and efficiency over the period.

Findings

The study finds the presence of stronger volatility comovement between inefficiency and illiquidity due to the price impact characteristics of the stock markets irrespective of different regions and diversified market conditions. The extent of time-variation increased following the shock periods, indicating the significant role of the financial crisis in increasing the volatility comovement between inefficiency and illiquidity. The highest degree of time-varying correlation is observed in the developed stock markets of Northwestern and Northern Europe compared to the regional and emerging counterparts. On the other hand, weak DCCs are observed in the emerging stock markets of Europe.

Originality/value

The output of the present study assists investors in identifying diversification opportunities across the regions. Additionally, the study has significant implications for market regulators, aiding in predicting future troughs and peaks. The prediction, in turn, helps formulate capital market development plans during dynamic economic situations.

Details

Studies in Economics and Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1086-7376

Keywords

Article
Publication date: 22 May 2024

Mohsin Iqbal, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Muhammad Iqbal and Adnan Rasul

Composite materials are effective alternatives for rehabilitating critical members of offshore platforms, bridges, and other structures. The structural response of composite…

Abstract

Purpose

Composite materials are effective alternatives for rehabilitating critical members of offshore platforms, bridges, and other structures. The structural response of composite reinforcement greatly depends on the orientation of fibres in the composite material. Joints are the most critical part of tubular structures. Various existing studies have identified optimal reinforcement orientations for a single load component, but none has addressed the combined load case, even though most practical loads are multiplanar.

Design/methodology/approach

This study investigates the optimal orientation of composite reinforcement for reducing stress concentration factors (SCF) of tubular KT-joints. The joint reinforcement was modelled and simulated using ANSYS. A parametric study was carried out to determine the effect of the orientations of reinforcement in the interface region on SCF at every 15° offset along the weld toe using linear extrapolation of principal stresses. The impact of orientation for uniplanar and multiplanar loads was investigated, and a general result about optimum orientation was inferred.

Findings

It was found that the maximum decrease of SCF is achieved by orienting the fibres of composite reinforcement along the maximum SCF. Notably, the optimal direction for any load configuration was consistently orthogonal to the weld toe of the chord-brace interface. As such, unidirectional composites wrapped around the brace axis, covering both sides of the brace-chord interface, are most effective for SCF reduction.

Originality/value

The findings of this study are crucial for adequate reinforcement of tubular joints using composites, offering a broader and universally applicable optimum orientation that transcends specific joint and load configuration.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 4 of 4