Search results

1 – 10 of 88
Article
Publication date: 9 May 2024

Umair Khan, Aurang Zaib, Anuar Ishak, El-Sayed M. Sherif and Piotr Wróblewski

Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable…

Abstract

Purpose

Ferrofluids are aqueous or non-aqueous solutions with colloidal particles of iron oxide nanoparticles with high magnetic characteristics. Their magnetic characteristics enable them to be controlled and manipulated when ferrofluids are exposed to magnetic fields. This study aims to inspect the features of unsteady stagnation point flow (SPF) and heat flux from the surface by incorporating ferromagnetic particles through a special kind of second-grade fluid (SGF) across a movable sheet with a nonlinear heat source/sink and magnetic field effect. The mass suction/injection and stretching/shrinking boundary conditions are also inspected to calculate the fine points of the features of multiple solutions.

Design/methodology/approach

The leading equations that govern the ferrofluid flow are reduced to a group of ordinary differential equations by applying similarity variables. The converted equations are numerically solved through the bvp4c solver. Afterward, study and discussion are carried out to examine the different physical parameters of the characteristics of nanofluid flow and thermal properties.

Findings

Multiple solutions are revealed to happen for situations of unsteadiness, shrinking as well as stretching sheets. Greater suction slows the separation of the boundary layers and causes the critical values to expand. The region where the multiple solutions appear is observed to expand with increasing values of the magnetic, non-Newtonian and suction parameters. Moreover, the fluid velocity significantly uplifts while the temperature declines due to the suction parameter.

Originality/value

The novelty of the work is to deliberate the impact of mass suction/injection on the unsteady SPF through the special second-grade ferrofluids across a movable sheet with an erratic heat source/sink. The confirmed results provide a very good consistency with the accepted papers. Previous studies have not yet fully explored the entire analysis of the proposed model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib and Anuar Ishak

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids…

Abstract

Purpose

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids outperform single nanofluids in terms of thermal performance. This study aims to address the stagnation point flow induced by Williamson hybrid nanofluids across a vertical plate. This fluid is drenched under the influence of mixed convection in a Darcy–Forchheimer porous medium with heat source/sink and entropy generation.

Design/methodology/approach

By applying the proper similarity transformation, the partial differential equations that represent the leading model of the flow problem are reduced to ordinary differential equations. For the boundary value problem of the fourth-order code (bvp4c), a built-in MATLAB finite difference code is used to tackle the flow problem and carry out the dual numerical solutions.

Findings

The shear stress decreases, but the rate of heat transfer increases because of their greater influence on the permeability parameter and Weissenberg number for both solutions. The ability of hybrid nanofluids to strengthen heat transfer with the incorporation of a porous medium is demonstrated in this study.

Practical implications

The findings may be highly beneficial in raising the energy efficiency of thermal systems.

Originality/value

The originality of the research lies in the investigation of the Darcy–Forchheimer stagnation point flow of a Williamson hybrid nanofluid across a vertical plate, considering buoyancy forces, which introduces another layer of complexity to the flow problem. This aspect has not been extensively studied before. The results are verified and offer a very favorable balance with the acknowledged papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2024

Birgül Aydın and Emre Ozan Aksöz

This research paper aims to identify and provide insights into rejuvenation strategies in Kaş as a microtourism destination based on the views of stakeholders.

Abstract

Purpose

This research paper aims to identify and provide insights into rejuvenation strategies in Kaş as a microtourism destination based on the views of stakeholders.

Design/methodology/approach

The research utilizes a single-case design, applying an inductive approach to analyze data collected from semi-structured interviews. Thematic analysis was employed to analyze the data.

Findings

The inductive thematic analysis yields nine different main themes: product transformation, integrated sustainable development strategies, cooperation, promotion through the right channels, stable tourism policy, selective tourism strategy, tourism awareness, access to tourist movements and management and tools for monitoring the quality and sustainability of tourism.

Practical implications

This research offers practical recommendations for regional authorities, residents and business stakeholders to foster sustainable tourism development by addressing resource utilization and existing challenges in the rejuvenation of Kaş.

Originality/value

This research contributes to theory by addressing the lack of applied research on the rejuvenation process in micro-tourism destinations, using Kaş (Turkey) as a case study. It identifies and emphasizes the unique challenges in microdestinations, enhancing our understanding and filling a critical knowledge gap. The identified rejuvenation strategies in Kaş are positioned to serve as a model for similar destinations, emphasizing their distinctive characteristics and challenges.

Details

Journal of Hospitality and Tourism Insights, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9792

Keywords

Open Access
Article
Publication date: 19 February 2024

Tiina Kemppainen and Tiina Elina Paananen

This study examines the dualities of digital services – that is, how customers’ favorite everyday digital services can positively and negatively contribute to their well-being…

Abstract

Purpose

This study examines the dualities of digital services – that is, how customers’ favorite everyday digital services can positively and negatively contribute to their well-being. Thus, the study describes the meanings of favorite digital services as part of customers’ everyday lives and the types of well-being to which such services can contribute.

Design/methodology/approach

We used a qualitative research approach through semi-structured interviews conducted in 2021 to collect data from 14 young adults (22–31 years old) who actively used digital services in their daily lives.

Findings

Our findings revealed that customers’ favorite everyday digital services can contribute to their mental well-being, social well-being, and intellectual well-being. Within these three dimensions of well-being, we identified nine dualities of digital services that describe their positive and negative contributions: (1) digital escapism versus digital disruption, (2) digital relaxation versus digital stress, (3) digital empowerment versus digital subjugation, (4) digital augmentation versus digital emptiness, (5) digital socialization versus digital isolation, (6) digital togetherness versus digital exclusion, (7) digital self-expression versus digital pressure, (8) digital learning versus digital dependence, and (9) digital inspiration versus digital stagnation.

Practical implications

These findings suggest that everyday digital services have the potential to contribute to customer well-being in various aspects – both positively and negatively – accentuating the need for service providers to decipher the impacts of their offerings on well-being. Indeed, understanding the relationship between digital services and customer well-being can help companies tailor their services to customers’ needs. Companies that prioritize customer well-being not only benefit their customers but also create sustainable growth opportunities in the long run. Further, companies can use the derived information in service design to develop marketing strategies that emphasize the positive impacts of their digital services on customer well-being.

Originality/value

Although prior transformative service studies have investigated the well-being of multiple stakeholders, such studies have focused on services related to the physical and healthcare domains. Consequently, the role of everyday digital services as contributors to customer well-being is an under-researched topic. In addition, the concept of well-being and its various dimensions has received limited attention in previous service research. By investigating everyday digital services and their multidimensional contribution to customer well-being, this study broadens the perspective on well-being within TSR and aids in refining a more precise conceptualization.

Details

Journal of Service Theory and Practice, vol. 34 no. 3
Type: Research Article
ISSN: 2055-6225

Keywords

Article
Publication date: 20 May 2024

Xiao Yang and Xinbo Qian

Hydraulic slide valve failure often results from competing failure modes, termed competitive failure. To enhance prediction accuracy for hydraulic slide valve remaining useful…

Abstract

Purpose

Hydraulic slide valve failure often results from competing failure modes, termed competitive failure. To enhance prediction accuracy for hydraulic slide valve remaining useful life, the authors propose a method incorporating competitive failure and Monte Carlo simulation. This method allows for more accurate prediction of hydraulic slide valve remaining useful life.

Design/methodology/approach

In this paper, the competitive failure mode of the hydraulic slide valve is analyzed by studying the two failure modes of the hydraulic slide valve, and the prediction of the remaining useful life of the hydraulic slide valve is studied by using the sample set generated by Monte Carlo simulation and the competitive failure joint model.

Findings

The results show that the proposed prediction method based on competitive failure and Monte Carlo simulation is more accurate than the traditional Bayesian joint model prediction method when dealing with the failure mode competition phenomenon of hydraulic slide valve.

Originality/value

In this paper, the remaining useful life prediction of hydraulic slide valve with competitive failure characteristics is studied, which provides a new idea for the remaining useful life prediction method.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0361/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 April 2024

Amin Barzegar, Mohammadreza Farahani and Amirreza Gomroki

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable…

Abstract

Purpose

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable advantages of material extrusion-based technique, the poor surface and subsurface integrity hinder the industrial application of this technology. The purpose of this study is introducing the hot air jet treatment (HAJ) technique for surface treatment of additive manufactured parts.

Design/methodology/approach

In the presented research, novel theoretical formulation and finite element models are developed to study and model the polishing mechanism of printed parts surface through the HAJ technique. The model correlates reflow material volume, layer width and layer height. The reflow material volume is a function of treatment temperature, treatment velocity and HAJ velocity. The values of reflow material volume are obtained through the finite element modeling model due to the complexity of the interactions between thermal and mechanical phenomena. The theoretical model presumptions are validated through experiments, and the results show that the treatment parameters have a significant impact on the surface characteristics, hardness and dimensional variations of the treated surface.

Findings

The results demonstrate that the average value of error between the calculated theoretical results and experimental results is 14.3%. Meanwhile, the 3D plots of Ra and Rq revealed that the maximum values of Ra and Rq reduction percentages at 255°C, 270°C, 285°C and 300°C treatment temperatures are (35.9%, 33.9%), (77.6%,76.4%), (94%, 93.8%) and (85.1%, 84%), respectively. The scanning electron microscope results illustrate three different treatment zones and the treatment-induced and manufacturing-induced entrapped air relief phenomenon. The measured results of hardness variation percentages and dimensional deviation percentages at different regimes are (8.33%, 0.19%), (10.55%, 0.31%) and (−0.27%, 0.34%), respectively.

Originality/value

While some studies have investigated the effect of the HAJ process on the structural integrity of manufactured items, there is a dearth of research on the underlying treatment mechanism, the integrity of the treated surface and the subsurface characteristics of the treated surface.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Expert briefing
Publication date: 29 April 2024

Behind this workforce expansion is higher immigration that has allowed considerably more new jobs without raising real wages. Immigration explains some of the strength in…

Details

DOI: 10.1108/OXAN-DB286716

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 30 April 2024

Reima Daher Alsemiry, Rabea E. Abo Elkhair, Taghreed H. Alarabi, Sana Abdulkream Alharbi, Reem Allogmany and Essam M. Elsaid

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels…

Abstract

Purpose

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels, can also lead to the death of many patients. Therefore, it was necessary to try to control the shear and normal stresses on these veins through nanoparticles in the presence of some external forces, such as exposure to some electromagnetic shocks, to reduce the risk of high pressure and stress on those blood vessels. This study aims to examines the shear and normal stresses of electroosmotic-magnetized Sutterby Buongiorno’s nanofluid in a symmetric peristaltic channel with a moderate Reynolds number and curvature. The production of thermal radiation is also considered. Sutterby nanofluids equations of motion, energy equation, nanoparticles concentration, induced magnetic field and electric potential are calculated without approximation using small and long wavelengths with moderate Reynolds numbers.

Design/methodology/approach

The Adomian decomposition method solves the nonlinear partial differential equations with related boundary conditions. Graphs and tables show flow features and biophysical factors like shear and normal stresses.

Findings

This study found that when curvature and a moderate Reynolds number are present, the non-Newtonian Sutterby fluid raises shear stress across all domains due to velocity decay, resulting in high shear stress. Additionally, modest mobility increases shear stress across all channel domains. The Sutterby parameter causes fluid motion resistance, which results in low energy generation and a decrease in the temperature distribution.

Originality/value

Equations of motion, energy equation, nanoparticle concentration, induced magnetic field and electric potential for Sutterby nano-fluids are obtained without any approximation i.e. the authors take small and long wavelengths and also moderate Reynolds numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 24 May 2024

Kimberly Bohannon, Vincent Connelly, Stephen Bigaj and Laura M. Wasielewski

The purpose of this research study was to examine school leaders’ critical perspectives about the nature of their partnerships with K-12 schools and two Educator Preparation…

Abstract

Purpose

The purpose of this research study was to examine school leaders’ critical perspectives about the nature of their partnerships with K-12 schools and two Educator Preparation Programs (EPP).

Design/methodology/approach

Data were collected through interviews with K-12 school leaders to obtain partners’ critical perspectives about school–EPP partnerships. The interviews were coded thematically and oriented around the central concept of working to represent the interplay of the participants and their collaborators’ perceptions of the nature and dimensions of school–EPP partnerships.

Findings

The analysis resulted in the construction of a mosaic of school leaders’ collective lived experiences using a statewide conceptual framework as a guide. Four themes emerged from our interviews with school partners: (a) the need for dynamic, responsive and synergistic partnerships; (b) the need to monitor and maintain the underlying structure and integrity of the partnership; (c) the culture of interns as colleagues or as visitors; and (d) the need to innovate.

Originality/value

Four themes emerged from our interviews with school partners: (1) the need for dynamic, responsive and synergistic partnerships; (2) the need to monitor and maintain the underlying structure and integrity of partnerships; (3) the culture of interns as colleagues or interns as visitors; and (4) the need to innovate.

Details

School-University Partnerships, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1935-7125

Keywords

Book part
Publication date: 17 May 2024

José G. Vargas-Hernández and Omar C. Vargas-González

This chapter aims to critically analyse the implications that the national protectionist policies have on the global supply and value chains and the relocation of production. The…

Abstract

This chapter aims to critically analyse the implications that the national protectionist policies have on the global supply and value chains and the relocation of production. The analysis is based on the assumptions that the global economy is facing the possibility of decoupling of many trade connections, and this trend favours de-globalisation processes that have long been promoted by populism, nationalism and economic protectionism. It is concluded that global supply, production and value chains although being economically efficient are no longer any more secure under national protectionist policies, and therefore, the relocation of production processes is mainly due to the increase in the level of income and wages of the developing countries that are the destination and which reduce the advantages to relocate.

Details

International Trade, Economic Crisis and the Sustainable Development Goals
Type: Book
ISBN: 978-1-83753-587-3

Keywords

1 – 10 of 88