Search results

1 – 7 of 7
Article
Publication date: 2 April 2024

Chenyu Zhang, Hongtao Xu and Yaodong Da

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal…

24

Abstract

Purpose

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal protection system for the WTs flanges using an electrical heat-tracing element.

Design/methodology/approach

A three-dimensional model and the Poly-Hexacore mesh structure are used, and the fluid-solid coupling method was validated and then deployed to analyze the heat transfer and convection process. Intra-volumetric heat sources are applied to represent the heat generated by the heating element, and the dynamic boundary conditions are considered. The steady temperature and temperature uniformity of the flange are the assessment criteria for the thermal protection performance of the heating element.

Findings

Enlarging the heating area and increasing the heating power improved the flange's temperature and temperature uniformity. A heating power of 4.9 kW was suitable for engineering applications with the lowest temperature nonuniformity. Compared with continuous heating, the increased temperature nonuniformity was buffered, and the electrical power consumption was reduced by half using pulse heating. Pulse heating time intervals of 1, 3 and 4 h were determined for the spring, autumn and winter, respectively.

Originality/value

The originality of this study is to propose a novel electrical heat-tracing thermal protection system for the WTs flanges. The effect of different arrangements, heating powers and heating strategies was studied, by which the theoretical basis is provided for a stable and long-term utilization of the WT flange.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 April 2024

Ali M. AlQahtani

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents…

Abstract

Purpose

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents a comprehensive analysis of the wind resources in Jubail Industrial City and proposes the design of a smart grid-connected wind farm for this strategic location.

Design/methodology/approach

The study used wind data collected at three different heights above ground level – 10, 50 and 90 m – over four years from 2017 to 2020. Key parameters, such as average wind speeds (WS), predominant wind direction, Weibull shape, scale parameters and wind power density (WPD), were analyzed. The study used Windographer, an exclusive software program designed to evaluate wind resources.

Findings

The average WS at the respective heights were 3.07, 4.29 and 4.58 m/s. The predominant wind direction was from the north-west. The Weibull shape parameter (k) at the three heights was 1.77, 2.15 and 2.01, while the scale parameter (c) was 3.36, 4.88 and 5.33 m/s. The WPD values at different heights were 17.9, 48.8 and 59.3 W/m2, respectively.

Originality/value

The findings suggest that Jubail Industrial City possesses favorable wind resources for wind energy generation. The proposed smart grid-connected wind farm design demonstrates the feasibility of harnessing wind power in the region, contributing to sustainable energy production and economic benefits.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 March 2024

Dhobale Yash and R. Rajesh

The study aims to identify the possible risk factors for electricity grids operational disruptions and to determine the most critical and influential risk indicators.

72

Abstract

Purpose

The study aims to identify the possible risk factors for electricity grids operational disruptions and to determine the most critical and influential risk indicators.

Design/methodology/approach

A multi-criteria decision-making best-worst method (BWM) is employed to quantitatively identify the most critical risk factors. The grey causal modeling (GCM) technique is employed to identify the causal and consequence factors and to effectively quantify them. The data used in this study consisted of two types – quantitative periodical data of critical factors taken from their respective government departments (e.g. Indian Meteorological Department, The Central Water Commission etc.) and the expert responses collected from professionals working in the Indian electric power sector.

Findings

The results of analysis for a case application in the Indian context shows that temperature dominates as the critical risk factor for electrical power grids, followed by humidity and crop production.

Research limitations/implications

The study helps to understand the contribution of factors in electricity grids operational disruptions. Considering the cause consequences from the GCM causal analysis, rainfall, temperature and dam water levels are identified as the causal factors, while the crop production, stock prices, commodity prices are classified as the consequence factors. In practice, these causal factors can be controlled to reduce the overall effects.

Practical implications

From the results of the analysis, managers can use these outputs and compare the risk factors in electrical power grids for prioritization and subsequent considerations. It can assist the managers in efficient allocation of funds and manpower for building safeguards and creating risk management protocols based on the severity of the critical factor.

Originality/value

The research comprehensively analyses the risk factors of electrical power grids in India. Moreover, the study apprehends the cause-consequence pair of factors, which are having the maximum effect. Previous studies have been focused on identification of risk factors and preliminary analysis of their criticality using autoregression. This research paper takes it forward by using decision-making methods and causal analysis of the risk factors with blend of quantitative and expert response based data analysis to focus on the determination of the criticality of the risk factors for the Indian electric power grid.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 5 April 2024

Felipe Sales Nogueira, João Luiz Junho Pereira and Sebastião Simões Cunha Jr

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg…

55

Abstract

Purpose

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm and test the sensors' configuration found in a delamination identification case study.

Design/methodology/approach

This work aims to study the damage identification in an aircraft wing using the Lichtenberg and multi-objective Lichtenberg algorithms. The former is used to identify damages, while the last is associated with feature selection techniques to perform the first sensor placement optimization (SPO) methodology with variable sensor number. It is applied aiming for the largest amount of information about using the most used modal metrics in the literature and the smallest sensor number at the same time.

Findings

The proposed method was not only able to find a sensor configuration for each sensor number and modal metric but also found one that had full accuracy in identifying delamination location and severity considering triaxial modal displacements and minimal sensor number for all wing sections.

Originality/value

This study demonstrates for the first time in the literature how the most used modal metrics vary with the sensor number for an aircraft wing using a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm.

Article
Publication date: 20 March 2024

Shufeng Tang, Yongsheng Kou, Guoqing Zhao, Huijie Zhang, Hong Chang, Xuewei Zhang and Yunhe Zou

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power…

Abstract

Purpose

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power transmission towers.

Design/methodology/approach

A connecting rod type gripper has been designed to achieve stable grasping of angle steel. Before grasping, use coordination between structures to achieve stable docking and grasping. By using the alternating movements of two claws and the middle climbing mechanism, the climbing and obstacle crossing of the angle steel were achieved.

Findings

Through a simple linkage mechanism, a climbing robot has been designed, greatly reducing the overall mass of the robot. It can also carry a load of 1 kg, and the climbing mechanism can perform stable climbing. The maximum step distance of the climbing robot is 543 mm, which can achieve the crossing of angle steel obstacles.

Originality/value

A transmission tower climbing mechanism was proposed by analyzing the working environment. Through the locking ability of the screw nut, stable clamping of the angle steel is achieved, and a pitch mechanism is designed to adjust the posture of the hand claw.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 July 2023

Brahim Gaies and Najeh Chaâbane

This study adopts a new macro-perspective to explore the complex and dynamic links between financial instability and the Euro-American green equity market. Its primary focus and…

Abstract

Purpose

This study adopts a new macro-perspective to explore the complex and dynamic links between financial instability and the Euro-American green equity market. Its primary focus and novelty is to shed light on the non-linear and asymmetric characteristics of dependence, causality, and contagion within various time and frequency domains. Specifically, the authors scrutinize how financial instability in the U.S. and EU interacts with their respective green stock markets, while also examining the cross-impact on each other's green equity markets. The analysis is carried out over short-, medium- and long-term horizons and under different market conditions, ranging from bearish and normal to bullish.

Design/methodology/approach

This study breaks new ground by employing a model-free and non-parametric approach to examine the relationship between the instability of the global financial system and the green equity market performance in the U.S. and EU. This study's methodology offers new insights into the time- and frequency-varying relationship, using wavelet coherence supplemented with quantile causality and quantile-on-quantile regression analyses. This advanced approach unveils non-linear and asymmetric causal links and characterizes their signs, effectively distinguishing between bearish, normal, and bullish market conditions, as well as short-, medium- and long-term horizons.

Findings

This study's findings reveal that financial instability has a strong negative impact on the green stock market over the medium to long term, in bullish market conditions and in times of economic and extra-economic turbulence. This implies that green stocks cannot be an effective hedge against systemic financial risk during periods of turbulence and euphoria. Moreover, the authors demonstrate that U.S. financial instability not only affects the U.S. green equity market, but also has significant spillover effects on the EU market and vice versa, indicating the existence of a Euro-American contagion mechanism. Interestingly, this study's results also reveal a positive correlation between financial instability and green equity market performance under normal market conditions, suggesting a possible feedback loop effect.

Originality/value

This study represents pioneering work in exploring the non-linear and asymmetric connections between financial instability and the Euro-American stock markets. Notably, it discerns how these interactions vary over the short, medium, and long term and under different market conditions, including bearish, normal, and bullish states. Understanding these characteristics is instrumental in shaping effective policies to achieve the Sustainable Development Goals (SDGs), including access to clean, affordable energy (SDG 7), and to preserve the stability of the international financial system.

Details

Journal of Economic Studies, vol. 51 no. 3
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

51

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 7 of 7