Search results

1 – 10 of 14
Article
Publication date: 12 October 2023

Erk Hacıhasanoğlu, Ömer Faruk Ünlüsoy and Fatma Selen Madenoğlu

The sustainable development goals (SDGs) are introduced to guide achieving the sustainable goals and tackle the global problems. United Nations members may perform activities to…

Abstract

Purpose

The sustainable development goals (SDGs) are introduced to guide achieving the sustainable goals and tackle the global problems. United Nations members may perform activities to achieve the predetermined goals and report on their SDG activities. The comprehension and commitment of several stakeholders are essential for the effective implementation of the SDGs. Countries encourage their stakeholders to perform and report their activities to meet the SDGs. The purpose of this study is to investigate the extent to which corporations’ annual reports address the SDGs to assess and comprehend their level of commitment to, priority of and integration of SDGs within their reporting structure. This research makes it easier to evaluate corporations’ sustainability performance and contributions to global sustainability goals by looking at the extent to which they address the SDGs.

Design/methodology/approach

In the study, it is revealed to what extent the reports meet the SDGs with the multilabel text classification approach. The SDG classification is carried out by examining the report with the help of a text analysis tool based on an enhanced version of gradient boosting. The implementation of a machine learning-based model allowed it to determine which SDGs are associated with the company’s operations without the requirement for the report’s authors to perform so. Therefore, instead of reading the texts to seek for “SDG” evidence as typically occurs in the literature, SDG proof was searched in relevant texts.

Findings

To show the feasibility of the study, the annual reports of the leading companies in Turkey are examined, and the results are interpreted. The study produced results including insights into the sustainable practices of businesses, priority SDG selection, benchmarking and business comparison, gaps and improvement opportunities identification and representation of the SDGs’ importance.

Originality/value

The findings of the analysis of annual reports indicate which SDGs they are concerned about. A gap in the literature can be noticed in the analysis of annual reports of companies that fall under a particular framework. In addition, it has sparked the idea of conducting research on a global scale and in a time series. With the aid of this research, decision-making procedures can be guided, and advancements toward the SDGs can be achieved.

Details

Corporate Governance: The International Journal of Business in Society, vol. 24 no. 3
Type: Research Article
ISSN: 1472-0701

Keywords

Article
Publication date: 8 June 2021

Naga Swetha R, Vimal K. Shrivastava and K. Parvathi

The mortality rate due to skin cancers has been increasing over the past decades. Early detection and treatment of skin cancers can save lives. However, due to visual resemblance…

Abstract

Purpose

The mortality rate due to skin cancers has been increasing over the past decades. Early detection and treatment of skin cancers can save lives. However, due to visual resemblance of normal skin and lesion and blurred lesion borders, skin cancer diagnosis has become a challenging task even for skilled dermatologists. Hence, the purpose of this study is to present an image-based automatic approach for multiclass skin lesion classification and compare the performance of various models.

Design/methodology/approach

In this paper, the authors have presented a multiclass skin lesion classification approach based on transfer learning of deep convolutional neural network. The following pre-trained models have been used: VGG16, VGG19, ResNet50, ResNet101, ResNet152, Xception, MobileNet and compared their performances on skin cancer classification.

Findings

The experiments have been performed on HAM10000 dataset, which contains 10,015 dermoscopic images of seven skin lesion classes. The categorical accuracy of 83.69%, Top2 accuracy of 91.48% and Top3 accuracy of 96.19% has been obtained.

Originality/value

Early detection and treatment of skin cancer can save millions of lives. This work demonstrates that the transfer learning can be an effective way to classify skin cancer images, providing adequate performance with less computational complexity.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 31 August 2023

Faisal Mehraj Wani, Jayaprakash Vemuri and Rajaram Chenna

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault…

Abstract

Purpose

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault Ground Motions (NFGMs), and thus forecasting the dynamic seismic response of structures, using conventional techniques, under such intense ground motions has remained a challenge.

Design/methodology/approach

The present study utilizes a 2D finite element model of an RC structure subjected to near-fault pulse-like ground motions with a focus on the storey drift ratio (SDR) as the key demand parameter. Five machine learning classifiers (MLCs), namely decision tree, k-nearest neighbor, random forest, support vector machine and Naïve Bayes classifier , were evaluated to classify the damage states of the RC structure.

Findings

The results such as confusion matrix, accuracy and mean square error indicate that the Naïve Bayes classifier model outperforms other MLCs with 80.0% accuracy. Furthermore, three MLC models with accuracy greater than 75% were trained using a voting classifier to enhance the performance score of the models. Finally, a sensitivity analysis was performed to evaluate the model's resilience and dependability.

Originality/value

The objective of the current study is to predict the nonlinear storey drift demand for low-rise RC structures using machine learning techniques, instead of labor-intensive nonlinear dynamic analysis.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 March 2024

Ashani Fernando, Chandana Siriwardana, David Law, Chamila Gunasekara, Kevin Zhang and Kumari Gamage

The increasing urgency to address climate change in construction has made green construction (GC) and sustainability critical topics for academia and industry professionals…

Abstract

Purpose

The increasing urgency to address climate change in construction has made green construction (GC) and sustainability critical topics for academia and industry professionals. However, the volume of literature in this field has made it impractical to rely solely on traditional systematic evidence mapping methodologies.

Design/methodology/approach

This study employs machine learning (ML) techniques to analyze the extensive evidence-base on GC. Using both supervised and unsupervised ML, 5,462 relevant papers were filtered from 10,739 studies published from 2010 to 2022, retrieved from the Scopus and Web of Science databases.

Findings

Key themes in GC encompass green building materials, construction techniques, assessment methodologies and management practices. GC assessment and techniques were prominent, while management requires more research. The results from prevalence of topics and heatmaps revealed important patterns and interconnections, emphasizing the prominent role of materials as major contributors to the construction sector. Consistency of the results with VOSviewer analysis further validated the findings, demonstrating the robustness of the review approach.

Originality/value

Unlike other reviews focusing only on specific aspects of GC, use of ML techniques to review a large pool of literature provided a holistic understanding of the research landscape. It sets a precedent by demonstrating the effectiveness of ML techniques in addressing the challenge of analyzing a large body of literature. By showcasing the connections between various facets of GC and identifying research gaps, this research aids in guiding future initiatives in the field.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 11 December 2023

Chi-Un Lei, Wincy Chan and Yuyue Wang

Higher education plays an essential role in achieving the United Nations sustainable development goals (SDGs). However, there are only scattered studies on monitoring how…

Abstract

Purpose

Higher education plays an essential role in achieving the United Nations sustainable development goals (SDGs). However, there are only scattered studies on monitoring how universities promote SDGs through their curriculum. The purpose of this study is to investigate the connection of existing common core courses in a university to SDG education. In particular, this study wanted to know how common core courses can be classified by machine-learning approach according to SDGs.

Design/methodology/approach

In this report, the authors used machine learning techniques to tag the 166 common core courses in a university with SDGs and then analyzed the results based on visualizations. The training data set comes from the OSDG public community data set which the community had verified. Meanwhile, key descriptions of common core courses had been used for the classification. The study used the multinomial logistic regression algorithm for the classification. Descriptive analysis at course-level, theme-level and curriculum-level had been included to illustrate the proposed approach’s functions.

Findings

The results indicate that the machine-learning classification approach can significantly accelerate the SDG classification of courses. However, currently, it cannot replace human classification due to the complexity of the problem and the lack of relevant training data.

Research limitations/implications

The study can achieve a more accurate model training through adopting advanced machine learning algorithms (e.g. deep learning, multioutput multiclass machine learning algorithms); developing a more effective test data set by extracting more relevant information from syllabus and learning materials; expanding the training data set of SDGs that currently have insufficient records (e.g. SDG 12); and replacing the existing training data set from OSDG by authentic education-related documents (such as course syllabus) with SDG classifications. The performance of the algorithm should also be compared to other computer-based and human-based SDG classification approaches for cross-checking the results, with a systematic evaluation framework. Furthermore, the study can be analyzed by circulating results to students and understanding how they would interpret and use the results for choosing courses for studying. Furthermore, the study mainly focused on the classification of topics that are taught in courses but cannot measure the effectiveness of adopted pedagogies, assessment strategies and competency development strategies in courses. The study can also conduct analysis based on assessment tasks and rubrics of courses to see whether the assessment tasks can help students understand and take action on SDGs.

Originality/value

The proposed approach explores the possibility of using machine learning for SDG classifications in scale.

Details

International Journal of Sustainability in Higher Education, vol. 25 no. 4
Type: Research Article
ISSN: 1467-6370

Keywords

Article
Publication date: 17 April 2024

Hazwani Shafei, Rahimi A. Rahman, Yong Siang Lee and Che Khairil Izam Che Ibrahim

Amid rapid technological progress, the construction industry is embracing Construction 4.0, redefining work practices through emerging technologies. However, the implications of…

Abstract

Purpose

Amid rapid technological progress, the construction industry is embracing Construction 4.0, redefining work practices through emerging technologies. However, the implications of Construction 4.0 technologies to enhancing well-being are still poorly understood. Particularly, the challenge lies in selecting technologies that critically contribute to well-being enhancement. Therefore, this study aims to evaluate the implications of Construction 4.0 technologies to enhancing well-being.

Design/methodology/approach

A list of Construction 4.0 technologies was identified from a national strategic plan on Construction 4.0, using Malaysia as a case study. Fourteen construction industry experts were selected to evaluate the implications of Construction 4.0 technologies on well-being using fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The expert judgment was measured using linguistic variables that were transformed into fuzzy values. Then, the collected data was analyzed using the following analyses: fuzzy TOPSIS, Pareto, normalization, sensitivity, ranking performance and correlation.

Findings

Six Construction 4.0 technologies are critical to enhancing well-being: cloud & real-time collaboration, big data & predictive analytics, Internet of Things, building information modeling, autonomous construction and augmented reality & virtualization. In addition, artificial intelligence and advanced building materials are recommended to be implemented simultaneously as a very strong correlation exists between them.

Originality/value

The novelty of this study lies in a comprehensive understanding of the implications of Construction 4.0 technologies to enhancing well-being. The findings can assist researchers, industry practitioners and policymakers in making well-informed decisions to select Construction 4.0 technologies when targeting the enhancement of the overall well-being of the local construction industry.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 2 April 2024

R.S. Vignesh and M. Monica Subashini

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories…

Abstract

Purpose

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories is different and also, there is insufficiency of high-scale databases for training. The purpose of the study is to provide high security.

Design/methodology/approach

In this research, optimization-assisted federated learning (FL) is introduced for thermoplastic waste segregation and classification. The deep learning (DL) network trained by Archimedes Henry gas solubility optimization (AHGSO) is used for the classification of plastic and resin types. The deep quantum neural networks (DQNN) is used for first-level classification and the deep max-out network (DMN) is employed for second-level classification. This developed AHGSO is obtained by blending the features of Archimedes optimization algorithm (AOA) and Henry gas solubility optimization (HGSO). The entities included in this approach are nodes and servers. Local training is carried out depending on local data and updations to the server are performed. Then, the model is aggregated at the server. Thereafter, each node downloads the global model and the update training is executed depending on the downloaded global and the local model till it achieves the satisfied condition. Finally, local update and aggregation at the server is altered based on the average method. The Data tag suite (DATS_2022) dataset is used for multilevel thermoplastic waste segregation and classification.

Findings

By using the DQNN in first-level classification the designed optimization-assisted FL has gained an accuracy of 0.930, mean average precision (MAP) of 0.933, false positive rate (FPR) of 0.213, loss function of 0.211, mean square error (MSE) of 0.328 and root mean square error (RMSE) of 0.572. In the second level classification, by using DMN the accuracy, MAP, FPR, loss function, MSE and RMSE are 0.932, 0.935, 0.093, 0.068, 0.303 and 0.551.

Originality/value

The multilevel thermoplastic waste segregation and classification using the proposed model is accurate and improves the effectiveness of the classification.

Article
Publication date: 26 April 2024

Chao Zhang, Zenghao Cao, Zhimin Li, Weidong Zhu and Yong Wu

Since the implementation of the regulatory inquiry system, research on its impact on information disclosure in the capital market has been increasing. This article focuses on a…

Abstract

Purpose

Since the implementation of the regulatory inquiry system, research on its impact on information disclosure in the capital market has been increasing. This article focuses on a specific area of study using Chinese annual report inquiry letters as the basis. From a text mining perspective, we explore whether the textual information contained in these inquiry letters can help predict financial restatement behavior of the inquired companies.

Design/methodology/approach

Python was used to process the data, nonparametric tests were conducted for hypothesis testing and indicator selection, and six machine learning models were employed to predict financial restatements.

Findings

Some text feature indicators in the models that exhibit significant differences are useful for predicting financial restatements, particularly the proportion of formal positive words and stopwords, readability, total word count and certain textual topics. Securities regulatory authorities are increasingly focusing on the accounting and financial aspects of companies' annual reports.

Research limitations/implications

This study explores the textual information in annual report inquiry letters, which can provide insights for other scholars into research methods and content. Besides, it can assist with decision making for participants in the capital market.

Originality/value

We use information technology to study the textual information in annual report inquiry letters and apply it to forecast financial restatements, which enriches the research in the field of regulatory inquiries.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 March 2024

Cemalettin Akdoğan, Tolga Özer and Yüksel Oğuz

Nowadays, food problems are likely to arise because of the increasing global population and decreasing arable land. Therefore, it is necessary to increase the yield of…

Abstract

Purpose

Nowadays, food problems are likely to arise because of the increasing global population and decreasing arable land. Therefore, it is necessary to increase the yield of agricultural products. Pesticides can be used to improve agricultural land products. This study aims to make the spraying of cherry trees more effective and efficient with the designed artificial intelligence (AI)-based agricultural unmanned aerial vehicle (UAV).

Design/methodology/approach

Two approaches have been adopted for the AI-based detection of cherry trees: In approach 1, YOLOv5, YOLOv7 and YOLOv8 models are trained with 70, 100 and 150 epochs. In Approach 2, a new method is proposed to improve the performance metrics obtained in Approach 1. Gaussian, wavelet transform (WT) and Histogram Equalization (HE) preprocessing techniques were applied to the generated data set in Approach 2. The best-performing models in Approach 1 and Approach 2 were used in the real-time test application with the developed agricultural UAV.

Findings

In Approach 1, the best F1 score was 98% in 100 epochs with the YOLOv5s model. In Approach 2, the best F1 score and mAP values were obtained as 98.6% and 98.9% in 150 epochs, with the YOLOv5m model with an improvement of 0.6% in the F1 score. In real-time tests, the AI-based spraying drone system detected and sprayed cherry trees with an accuracy of 66% in Approach 1 and 77% in Approach 2. It was revealed that the use of pesticides could be reduced by 53% and the energy consumption of the spraying system by 47%.

Originality/value

An original data set was created by designing an agricultural drone to detect and spray cherry trees using AI. YOLOv5, YOLOv7 and YOLOv8 models were used to detect and classify cherry trees. The results of the performance metrics of the models are compared. In Approach 2, a method including HE, Gaussian and WT is proposed, and the performance metrics are improved. The effect of the proposed method in a real-time experimental application is thoroughly analyzed.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 14 November 2023

Rodolfo Canelón, Christian Carrasco and Felipe Rivera

It is well known in the mining industry that the increase in failures and breakdowns is due mainly to a poor maintenance policy for the equipment, in addition to the difficult…

Abstract

Purpose

It is well known in the mining industry that the increase in failures and breakdowns is due mainly to a poor maintenance policy for the equipment, in addition to the difficult access that specialized personnel have to combat the breakdown, which translates into more machine downtime. For this reason, this study aims to propose a remote assistance model for diagnosing and repairing critical breakdowns in mining industry trucks using augmented reality techniques and data analytics with a quality approach that considerably reduces response times, thus optimizing human resources.

Design/methodology/approach

In this work, the six-phase CRIPS-DM methodology is used. Initially, the problem of fault diagnosis in trucks used in the extraction of material in the mining industry is addressed. The authors then propose a model under study that seeks a real-time connection between a service technician attending the truck at the mine site and a specialist located at a remote location, considering the data transmission requirements and the machine's characterization.

Findings

It is considered that the theoretical results obtained in the development of this study are satisfactory from the business point of view since, in the first instance, it fulfills specific objectives related to the telecare process. On the other hand, from the data mining point of view, the results manage to comply with the theoretical aspects of the establishment of failure prediction models through the application of the CRISP-DM methodology. All of the above opens the possibility of developing prediction models through machine learning and establishing the best model for the objective of failure prediction.

Originality/value

The original contribution of this work is the proposal of the design of a remote assistance model for diagnosing and repairing critical failures in the mining industry, considering augmented reality and data analytics. Furthermore, the integration of remote assistance, the characterization of the CAEX, their maintenance information and the failure prediction models allow the establishment of a quality-based model since the database with which the learning machine will work is constantly updated.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of 14