Search results

1 – 10 of 96
Article
Publication date: 24 April 2024

Ali M. AlQahtani

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents…

Abstract

Purpose

Jubail Industrial City is one of the largest industrial centers in the Middle East, offering potential opportunities for renewable energy generation. This research paper presents a comprehensive analysis of the wind resources in Jubail Industrial City and proposes the design of a smart grid-connected wind farm for this strategic location.

Design/methodology/approach

The study used wind data collected at three different heights above ground level – 10, 50 and 90 m – over four years from 2017 to 2020. Key parameters, such as average wind speeds (WS), predominant wind direction, Weibull shape, scale parameters and wind power density (WPD), were analyzed. The study used Windographer, an exclusive software program designed to evaluate wind resources.

Findings

The average WS at the respective heights were 3.07, 4.29 and 4.58 m/s. The predominant wind direction was from the north-west. The Weibull shape parameter (k) at the three heights was 1.77, 2.15 and 2.01, while the scale parameter (c) was 3.36, 4.88 and 5.33 m/s. The WPD values at different heights were 17.9, 48.8 and 59.3 W/m2, respectively.

Originality/value

The findings suggest that Jubail Industrial City possesses favorable wind resources for wind energy generation. The proposed smart grid-connected wind farm design demonstrates the feasibility of harnessing wind power in the region, contributing to sustainable energy production and economic benefits.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 December 2023

Akash Gupta and Manjeet Singh

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and…

29

Abstract

Purpose

This study aims to evaluate the failure behavior of glass fiber-reinforced epoxy (GFRE) laminate subjected to cyclic loading conditions. It involves experimental investigation and statistical analysis using Weibull distribution to characterize the failure behavior of the GFRE composite laminate.

Design/methodology/approach

Fatigue tests were conducted using a tension–tension loading scheme at a frequency of 2 Hz and a loading ratio (R) of 0.1. The tests were performed at five different stress levels, corresponding to 50%–90% of the ultimate tensile strength (UTS). Failure behavior was assessed through cyclic stress-strain hysteresis plots, dynamic modulus behavior and scanning electron microscopy (SEM) analysis of fracture surfaces.

Findings

The study identified common modes of failure, including fiber pullouts, fiber breakage and matrix cracking. At low stress levels, fiber breakage, matrix cracking and fiber pullouts occurred due to high shear stresses at the fiber–matrix interface. Conversely, at high stress levels, fiber breakage and matrix cracking predominated. Higher stress levels led to larger stress-strain hysteresis loops, indicating increased energy dissipation during cyclic loading. High stress levels were associated with a more significant decrease in stiffness over time, implying a shorter fatigue life, while lower stress levels resulted in a gradual decline in stiffness, leading to extended fatigue life.

Originality/value

This study makes a valuable contribution to understanding fatigue behavior under tension–tension loading conditions, coupled with an in-depth analysis of the failure mechanism in GFRE composite laminate at different stress levels. The fatigue behavior is scrutinized through stress-strain hysteresis plots and dynamic modulus versus normalized cycles plots. Furthermore, the characterization of the failure mechanism is enhanced by using SEM imaging of fractured specimens. The Weibull distribution approach is used to obtain a reliable estimate of fatigue life.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 August 2023

Jianhui Liu, Ziyang Zhang, Longxiang Zhu, Jie Wang and Yingbao He

Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of…

Abstract

Purpose

Due to the limitation of experimental conditions and budget, fatigue data of mechanical components are often scarce in practical engineering, which leads to low reliability of fatigue data and reduces the accuracy of fatigue life prediction. Therefore, this study aims to expand the available fatigue data and verify its reliability, enabling the achievement of life prediction analysis at different stress levels.

Design/methodology/approach

First, the principle of fatigue life probability percentiles consistency and the perturbation optimization technique is used to realize the equivalent conversion of small samples fatigue life test data at different stress levels. Meanwhile, checking failure model by fitting the goodness of fit test and proposing a Monte Carlo method based on the data distribution characteristics and a numerical simulation strategy of directional sampling is used to extend equivalent data. Furthermore, the relationship between effective stress and characteristic life is analyzed using a combination of the Weibull distribution and the Stromeyer equation. An iterative sequence is established to obtain predicted life.

Findings

The TC4–DT titanium alloy is selected to assess the accuracy and reliability of the proposed method and the results show that predicted life obtained with the proposed method is within the double dispersion band, indicating high accuracy.

Originality/value

The purpose of this study is to provide a reference for the expansion of small sample fatigue test data, verification of data reliability and prediction of fatigue life data. In addition, the proposed method provides a theoretical basis for engineering applications.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 January 2022

Akash Gupta and Manjeet Singh

The purpose of this study is to check the reliability of a multi-pin joint to be a fail-safe joint by considering different geometric and material parameters. The pin joints are…

Abstract

Purpose

The purpose of this study is to check the reliability of a multi-pin joint to be a fail-safe joint by considering different geometric and material parameters. The pin joints are made of uni-directional fiberglass that has been impregnated with epoxy composites incorporating 3% nano-clay.

Design/methodology/approach

This study incorporates the analysis of multi-pin joints experimentally, numerically and statistically using the Weibull approach. During analyses, geometrical parameters edge to diameter (E:D), longitudinal pitch to diameter (F:D), side edge to diameter (S:D) and transverse pitch to diameter (P:D) were analyzed using the Taguchi method with a higher-the-better L16 orthogonal array.

Findings

This study aims to develop multi-pin laminated joints to attain higher reliability, which have been designated as fail-safe joints for the intended application and which have higher joint strength. The study reveals that to achieve 99% reliability or 1% probability of failure using the Weibull approach, 24.4% load decrement from the experimental result recorded for three-pin joint configuration at E:D = 4, F:D = 5, S:D = 4 and P:D = 5. Similarly, for the four-pin configuration at E:D = 4, F:D = 4, S:D = 4 and P:D = 5, 23.07% of load decrement observed from the experimental result implies that the expected load with a 99% reliability offers a safe load.

Originality/value

A reliability analysis on multi-pin joints was not conducted in structural application. Composite materials are used because of high reliability and high strength-to-weight ratio. So, in the present work, reliability of the multi-pin joint is analyzed using Weibull distribution.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 December 2023

Yunhao Zhang, Chunlei Shao, Jing Kong, Junwei Zhou and Jianfeng Zhou

This paper aims to prevent gasket sealing failure in engineering, accurately predict gasket life, extend system life and improve sealing reliability. The accelerated life test…

Abstract

Purpose

This paper aims to prevent gasket sealing failure in engineering, accurately predict gasket life, extend system life and improve sealing reliability. The accelerated life test method of flexible graphite composite–reinforced gaskets is established, the life distribution law of flexible graphite composite–reinforced gaskets is revealed, and the life prediction method of flexible graphite composite–reinforced gaskets with different allowable leakage rates is proposed, which can provide a reference for the life prediction of other types of gaskets.

Design/methodology/approach

In this study, flexible graphite composite–reinforced gaskets were tested for long-term high-temperature sealing performance on a multi-sample gasket accelerated life test rig. The data were also analyzed using the least squares method and the K-S hypothesis calibration method. A gasket time-dependent leakage model and an accelerated life model were also developed. Constant stress-accelerated life tests were conducted on flexible graphite composite–reinforced gaskets. On this basis, a gasket life prediction method at different allowable leakage rates was proposed.

Findings

The life distribution law of flexible graphite composite–reinforced gaskets is revealed. The results show that the life of the gasket obeys the Weibull distribution. The time-correlated leakage model and accelerated life model of the gasket were established. And the accelerated life test method of the flexible graphite composite–reinforced gasket was established. The life distribution parameters, accelerated life model parameters and life estimates of gaskets were obtained through tests. On this basis, a gasket life prediction method under different leakage rates was proposed, which can be used as a reference for other types of gaskets.

Practical implications

The research in this paper can better provide guidance for the use and replacement of gaskets in the project, which is also very meaningful for predicting the leakage condition of gaskets in the bolted flange connection system and taking corresponding control measures to reduce energy waste and pollution and ensure the safe operation of industrial equipment.

Originality/value

A multi-specimen gasket-accelerated life test device has been developed, and the design parameters of the device have reached the international advanced level. The life distribution law of the flexible graphite composite–reinforced gasket was revealed. The accelerated life test method for the flexible graphite composite–reinforced gasket was established. The life prediction method of the flexible graphite composite–reinforced gasket under different allowable leakage rates was proposed.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0254/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 November 2023

M. Sankara Narayanan, P. Jeyadurga and S. Balamurali

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life…

Abstract

Purpose

The purpose of this paper is to design a modified version of the double sampling plan to handle the inspection processes requiring a minimum sample size to assure the median life for the products under the new Weibull–Pareto distribution. The economic design of the proposed plan is also considered to assure the product's lifetime with minimum cost.

Design/methodology/approach

The authors have developed an optimization model for obtaining the required plan parameters by solving simultaneously two non-linear inequalities and such inequalities have been formed based on the two points on the operating characteristic curve approach.

Findings

The results show that the average sample number, average total inspection and total inspection cost under the proposed plan are smaller than the same of a single sampling plan. This means that the proposed plan will be more efficient than a single sampling plan in reducing inspection effort and cost while providing the desired protection.

Originality/value

The proposed modified double sampling plan designed to assure the median life of the products under the new Weibull–Pareto distribution is not available in the literature. The proposed plan will be very useful in assuring the product median lifetime with minimum sample size as well as minimum cost in all the manufacturing industries.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Book part
Publication date: 4 April 2024

Ramin Rostamkhani and Thurasamy Ramayah

This chapter of the book seeks to use famous mathematical functions (statistical distribution functions) in evaluating and analyzing supply chain network data related to supply…

Abstract

This chapter of the book seeks to use famous mathematical functions (statistical distribution functions) in evaluating and analyzing supply chain network data related to supply chain management (SCM) elements in organizations. In other words, the main purpose of this chapter is to find the best-fitted statistical distribution functions for SCM data. Explaining how to best fit the statistical distribution function along with the explanation of all possible aspects of a function for selected components of SCM from this chapter will make a significant attraction for production and services experts who will lead their organization to the path of competitive excellence. The main core of the chapter is the reliability values related to the reliability function calculated by the relevant chart and extracting other information based on other aspects of statistical distribution functions such as probability density, cumulative distribution, and failure function. This chapter of the book will turn readers into professional users of statistical distribution functions in mathematics for analyzing supply chain element data.

Details

The Integrated Application of Effective Approaches in Supply Chain Networks
Type: Book
ISBN: 978-1-83549-631-2

Keywords

Article
Publication date: 15 September 2023

Suzan Alaswad and Sinan Salman

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively…

Abstract

Purpose

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.

Design/methodology/approach

This paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.

Findings

When the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.

Originality/value

Most of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 30 April 2024

Luigi Morfini, Fankai Meng, Margherita Beretta, Jozef Vleugels, Roberto Spina and Eleonora Ferraris

This study aims to investigate the performance of filament-based material extrusion additive manufacturing (MEX), combined with debinding and sintering, as a novel approach to…

Abstract

Purpose

This study aims to investigate the performance of filament-based material extrusion additive manufacturing (MEX), combined with debinding and sintering, as a novel approach to manufacturing ceramic components.

Design/methodology/approach

A commercial ZrO2 filament was selected and analysed by infra-red (IR) spectroscopy, rheology and thermo-gravimetry. The influence of the print parameters (layer thickness, flow rate multiplier, printing speed) and sintering cycle were investigated to define a suitable printing and sintering strategy. Biaxial flexure tests were applied on sintered discs realised with optimised printing strategies, and the results were analysed via Weibull statistics to evaluate the mechanical properties of printed components. The hardness and thermal conductivity of sintered components were also tested.

Findings

Layer thickness and flow rate multiplier of the printing process were proved to have significant effect on the density of as-printed parts. Optimised samples display a sintered density >99% of the theoretical density, 20% linear sintering shrinkage, a characteristic flexural strength of 871 MPa with a Weibull modulus of 4.9, a Vickers hardness of 12.90 ± 0.3 GPa and a thermal conductivity of 3.62 W/mK. Gyroids were printed for demonstration purposes.

Originality/value

To the best of the authors’ knowledge, this work is the first to apply biaxial flexure tests and Weibull statistics to additively manufactured MEX zirconia components, hence providing comparable results to other additive technologies. Moreover, fractography analysis builds the connection between printing defects and the fracture mechanism of bending. This study also provides guidelines for fabricating high-density zirconia components with MEX.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 November 2023

Yingguang Wang

The purpose of this paper is to exploit a new and robust method to forecast the long-term extreme dynamic responses for wave energy converters (WECs).

Abstract

Purpose

The purpose of this paper is to exploit a new and robust method to forecast the long-term extreme dynamic responses for wave energy converters (WECs).

Design/methodology/approach

A new adaptive binned kernel density estimation (KDE) methodology is first proposed in this paper.

Findings

By examining the calculation results the authors has found that in the tail region the proposed new adaptive binned KDE distribution curve becomes very smooth and fits quite well with the histogram of the measured ocean wave dataset at the National Data Buoy Center (NDBC) station 46,059. Carefully studying the calculation results also reveals that the 50-year extreme power-take-off heaving force value forecasted based on the environmental contour derived using the new method is 3572600N, which is much larger than the value 2709100N forecasted via the Rosenblatt-inverse second-order reliability method (ISORM) contour method.

Research limitations/implications

The proposed method overcomes the disadvantages of all the existing nonparametric and parametric methods for predicting the tail region probability density values of the sea state parameters.

Originality/value

It is concluded that the proposed new adaptive binned KDE method is robust and can forecast well the 50-year extreme dynamic responses for WECs.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 96