Search results

1 – 4 of 4
Article
Publication date: 18 August 2023

Krishna Manasvi J., Rajesh Matai and Nagesh N. Murthy

Due to the recent disruptions caused by COVID-19, global supply chains are stress tested. The affected supply chains have interfered with market tonnage prices for the yield of…

Abstract

Purpose

Due to the recent disruptions caused by COVID-19, global supply chains are stress tested. The affected supply chains have interfered with market tonnage prices for the yield of perishable products like mangoes that are highly dependent on their quality. This research, through empirical findings, thus determines and comprehends the factors influencing mango quality (size).

Design/methodology/approach

A framework is developed for finding the potential factors of quality building on the previous literature and studies on the available topic. The data collection included face-to-face interviews comprising 240 farmers, hired managers and preharvest contractors in India's Jangaon, Rangareddy and Yadadri Bhuvanagiri districts of Telangana state. The data analysis is done using multiple regression, and the outcomes form the basis of the design of the experiments model.

Findings

The empirical insights support that the quality of mango is affected by factors such as the number of picking cycles, the cost of fertilizer, the variety of fertilizers used, the variety of pesticides used and pesticide application frequency. The direct implications are the benefit to farmers in improving mango quality and maximizing profit per yield cycle.

Research limitations/implications

To the best of the authors’ knowledge, the first research that has specifically focused on holistically improving the quality(size) of mangoes.

Originality/value

The findings contribute to the perishable supply chain literature, specifically to the mango study, to comprehensively showcase the factors impacting the quality of mangoes and provide guidance to farmers regarding orchard practices.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-0839

Keywords

Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric…

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 15 March 2024

Obed Ofori Yemoh, Richard Opoku, Gabriel Takyi, Ernest Kwadwo Adomako, Felix Uba and George Obeng

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat…

Abstract

Purpose

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat transmission load and energy consumption towards green building adaptation.

Design/methodology/approach

Samples of coconut fiber (coir) and corn husk fiber bricks were fabricated and tested for their thermophysical properties using the Transient Plane Source (TPS) 2500s instrument. A simulation was conducted using Dynamic Energy Response of Building - Lunds Tekniska Hogskola (DEROB-LTH) to determine indoor temperature variation over 24 h. The time lag and decrement factor, two important parameters in evaluating building envelopes, were also determined.

Findings

The time lag of the bio-based composite building envelope was found to be in the range of 4.2–4.6 h for 100 mm thickness block and 10.64–11.5 h for 200 mm thickness block. The decrement factor was also determined to be in the range of 0.87–0.88. The bio-based composite building envelopes were able to maintain the indoor temperature of the model from 25.4 to 27.4 °C, providing a closely stable indoor thermal comfort despite varying outdoor temperatures. The temperature variation in 24 h, was very stable for about 8 h before a degree increment, providing a comfortable indoor temperature for occupants and the need not to rely on air conditions and other mechanical forms of cooling. Potential energy savings also peaked at 529.14 kWh per year.

Practical implications

The findings of this study present opportunities to building developers and engineers in terms of selecting vernacular materials for building envelopes towards green building adaptation, energy savings, reduced construction costs and job creation.

Originality/value

This study presents for the first time, time lag and decrement factor for bio-based composite building envelopes for green building adaptation in hot climates, as found in Ghana.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 19 December 2023

Selena Aureli, Eleonora Foschi and Angelo Paletta

This study investigates the implementation of a sustainable circular business model from an accounting perspective. Its goal is to understand if and how decision- makers use…

1489

Abstract

Purpose

This study investigates the implementation of a sustainable circular business model from an accounting perspective. Its goal is to understand if and how decision- makers use management accounting systems, and what changes are needed if these systems are to support the transition toward a circular economy.

Design/methodology/approach

Dialogic accounting theory frames the case study of six companies that built a value network to develop and implement an innovative packaging solution consistent with circular economy principles. Content analysis was utilised to investigate the accounting tools used.

Findings

The findings indicate that circular solutions generate new organisational configurations based on value networks. Interestingly, managers’ decision-making process largely bypassed the accounting function; they relied on informal accounting and life cycle analysis, which stimulated a multi-stakeholder dialogue in a life cycle perspective.

Research limitations/implications

The research provides theoretical and practical insights into the capability of management accounting systems to support companies seeking circular solutions.

Practical implications

The authors offer implications for accounting practice, chief financial officers (CFOs) and accounting educators, suggesting that a dialogic approach may support value retention of resources, materials and products, as required by the circular economy.

Social implications

The research contributes to the debate about the role of accounting in sustainability, specifically the need for connecting for resource efficiency at the corporate level with the rationalisation of resource use within planetary boundaries.

Originality/value

The study contributes to the limited research into the role of management accounting in a company’s transition to circular business models. Dialogic accounting theory frames exploration of how accounting may evolve to help businesses become accountable to all stakeholders, including the environment.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

1 – 4 of 4