Search results

1 – 10 of 15
Article
Publication date: 4 June 2024

Rajalakshmi Sivanaiah, Mirnalinee T T and Sakaya Milton R

The increasing popularity of music streaming services also increases the need to customize the services for each user to attract and retain customers. Most of the music streaming…

Abstract

Purpose

The increasing popularity of music streaming services also increases the need to customize the services for each user to attract and retain customers. Most of the music streaming services will not have explicit ratings for songs; they will have only implicit feedback data, i.e user listening history. For efficient music recommendation, the preferences of the users have to be infered, which is a challenging task.

Design/methodology/approach

Preferences of the users can be identified from the users' listening history. In this paper, a hybrid music recommendation system is proposed that infers features from user's implicit feedback and uses the hybrid of content-based and collaborative filtering method to recommend songs. A Content Boosted K-Nearest Neighbours (CBKNN) filtering technique was proposed, which used the users' listening history, popularity of songs, song features, and songs of similar interested users for recommending songs. The song features are taken as content features. Song Frequency–Inverse Popularity Frequency (SF-IPF) metric is proposed to find the similarity among the neighbours in collaborative filtering. Million Song Dataset and Echo Nest Taste Profile Subset are used as data sets.

Findings

The proposed CBKNN technique with SF-IPF similarity measure to identify similar interest neighbours performs better than other machine learning techniques like linear regression, decision trees, random forest, support vector machines, XGboost and Adaboost. The performance of proposed SF-IPF was tested with other similarity metrics like Pearson and Cosine similarity measures, in which SF-IPF results in better performance.

Originality/value

This method was devised to infer the user preferences from the implicit feedback data and it is converted as rating preferences. The importance of adding content features with collaborative information is analysed in hybrid filtering. A new similarity metric SF-IPF is formulated to identify the similarity between the users in collaborative filtering.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 21 May 2024

Joseph Vivek, Naveen Venkatesh S., Tapan K. Mahanta, Sugumaran V., M. Amarnath, Sangharatna M. Ramteke and Max Marian

This study aims to explore the integration of machine learning (ML) in tribology to optimize lubrication interval decisions, aiming to enhance equipment lifespan and operational…

Abstract

Purpose

This study aims to explore the integration of machine learning (ML) in tribology to optimize lubrication interval decisions, aiming to enhance equipment lifespan and operational efficiency through wear image analysis.

Design/methodology/approach

Using a data set of scanning electron microscopy images from an internal combustion engine, the authors used AlexNet as the feature extraction algorithm and the J48 decision tree algorithm for feature selection and compared 15 ML classifiers from the lazy-, Bayes and tree-based families.

Findings

From the analyzed ML classifiers, instance-based k-nearest neighbor emerged as the optimal algorithm with a 95% classification accuracy against testing data. This surpassed individually trained convolutional neural networks’ (CNNs) and closely approached ensemble deep learning (DL) techniques’ accuracy.

Originality/value

The proposed approach simplifies the process, enhances efficiency and improves interpretability compared to more complex CNNs and ensemble DL techniques.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 10 June 2024

Lua Thi Trinh

The purpose of this paper is to compare nine different models to evaluate consumer credit risk, which are the following: Logistic Regression (LR), Naive Bayes (NB), Linear…

Abstract

Purpose

The purpose of this paper is to compare nine different models to evaluate consumer credit risk, which are the following: Logistic Regression (LR), Naive Bayes (NB), Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Classification and Regression Tree (CART), Artificial Neural Network (ANN), Random Forest (RF) and Gradient Boosting Decision Tree (GBDT) in Peer-to-Peer (P2P) Lending.

Design/methodology/approach

The author uses data from P2P Lending Club (LC) to assess the efficiency of a variety of classification models across different economic scenarios and to compare the ranking results of credit risk models in P2P lending through three families of evaluation metrics.

Findings

The results from this research indicate that the risk classification models in the 2013–2019 economic period show greater measurement efficiency than for the difficult 2007–2012 period. Besides, the results of ranking models for predicting default risk show that GBDT is the best model for most of the metrics or metric families included in the study. The findings of this study also support the results of Tsai et al. (2014) and Teplý and Polena (2019) that LR, ANN and LDA models classify loan applications quite stably and accurately, while CART, k-NN and NB show the worst performance when predicting borrower default risk on P2P loan data.

Originality/value

The main contributions of the research to the empirical literature review include: comparing nine prediction models of consumer loan application risk through statistical and machine learning algorithms evaluated by the performance measures according to three separate families of metrics (threshold, ranking and probabilistic metrics) that are consistent with the existing data characteristics of the LC lending platform through two periods of reviewing the current economic situation and platform development.

Details

Journal of Economics, Finance and Administrative Science, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2077-1886

Keywords

Article
Publication date: 28 May 2024

Kuo-Yi Lin and Thitipong Jamrus

Motivated by recent research indicating the significant challenges posed by imbalanced datasets in industrial settings, this paper presents a novel framework for Industrial…

12

Abstract

Purpose

Motivated by recent research indicating the significant challenges posed by imbalanced datasets in industrial settings, this paper presents a novel framework for Industrial Data-driven Modeling for Imbalanced Fault Diagnosis, aiming to improve fault detection accuracy and reliability.

Design/methodology/approach

This study addressing the challenge of imbalanced datasets in predicting hard drive failures is both innovative and comprehensive. By integrating data enhancement techniques with cost-sensitive methods, the research pioneers a solution that directly targets the intrinsic issues posed by imbalanced data, a common obstacle in predictive maintenance and reliability analysis.

Findings

In real industrial environments, there is a critical demand for addressing the issue of imbalanced datasets. When faced with limited data for rare events or a heavily skewed distribution of categories, it becomes essential for models to effectively mine insights from the original imbalanced dataset. This involves employing techniques like data augmentation to generate new insights and rules, enhancing the model’s ability to accurately identify and predict failures.

Originality/value

Previous research has highlighted the complexity of diagnosing faults within imbalanced industrial datasets, often leading to suboptimal predictive accuracy. This paper bridges this gap by introducing a robust framework for Industrial Data-driven Modeling for Imbalanced Fault Diagnosis. It combines data enhancement and cost-sensitive methods to effectively manage the challenges posed by imbalanced datasets, further innovating with a bagging method to refine model optimization. The validation of the proposed approach demonstrates superior accuracy compared to existing methods, showcasing its potential to significantly improve fault diagnosis in industrial applications.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 21 May 2024

Nikolaos Kladovasilakis, Paschalis Charalampous, Ioannis Kostavelis and Dimitrios Tzovaras

This paper aims to present an integrated system designed for quality control and inspection in additive manufacturing (AM) technologies.

Abstract

Purpose

This paper aims to present an integrated system designed for quality control and inspection in additive manufacturing (AM) technologies.

Design/methodology/approach

The study undertakes a comprehensive examination of the process in three distinct stages. First, the quality of the feedstock material is inspected during the preprocessing step. Subsequently, the main research topic of the study is directed toward the 3D printing process itself with real-time monitoring procedures using computer vision methods. Finally, an evaluation of the 3D printed parts is conducted, using measuring methods and mechanical experiments.

Findings

The main results of this technical paper are the development and presentation of an integrated solution for quality control and inspection in AM processes.

Originality/value

The proposed solution entails the development of a promising tool for the optimization of the quality in 3D prints based on machine learning algorithms.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 May 2024

Naurin Farooq Khan, Hajra Murtaza, Komal Malik, Muzammil Mahmood and Muhammad Aslam Asadi

This research aims to understand the smartphone security behavior using protection motivation theory (PMT) and tests the current PMT model employing statistical and predictive…

Abstract

Purpose

This research aims to understand the smartphone security behavior using protection motivation theory (PMT) and tests the current PMT model employing statistical and predictive analysis using machine learning (ML) algorithms.

Design/methodology/approach

This study employs a total of 241 questionnaire-based responses in a nonmandated security setting and uses multimethod approach. The research model includes both security intention and behavior making use of a valid smartphone security behavior scale. Structural equation modeling (SEM) – explanatory analysis was used in understanding the relationships. ML algorithms were employed to predict the accuracy of the PMT model in an experimental evaluation.

Findings

The results revealed that the threat-appraisal element of the PMT did not have any influence on the intention to secure smartphone while the response efficacy had a role in explaining the smartphone security intention and behavior. The ML predictive analysis showed that the protection motivation elements were able to predict smartphone security intention and behavior with an accuracy of 73%.

Research limitations/implications

The findings imply that the response efficacy of the individuals be improved by cybersecurity training programs in order to enhance the protection motivation. Researchers can test other PMT models, including fear appeals to improve the predictive accuracy.

Originality/value

This study is the first study that makes use of theory-driven SEM analysis and data-driven ML analysis to bridge the gap between smartphone security’s theory and practice.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 30 May 2024

P. Santhuja and V. Anbarasu

An efficient e-waste management system is developed, aided by deep learning techniques. Here, a smart bin system using Internet of things (IoT) sensors is generated. The sensors…

Abstract

Purpose

An efficient e-waste management system is developed, aided by deep learning techniques. Here, a smart bin system using Internet of things (IoT) sensors is generated. The sensors detect the level of waste in the dustbin. The data collected by the IoT sensor is stored in the blockchain. Here, an adaptive deep Markov random field (ADMRF) method is implemented to determine the weight of the wastes. The performance of the ADMRF is boosted by optimizing its parameters with the help of the improved corona virus herd immunity optimization algorithm (ICVHIOA). Here, the main objective of the developed ADMRF-based waste weight prediction is to minimize the root mean square error (RMSE) and mean absolute error (MAE) rate at the time of testing. If the weight of the bins is more than 80%, then an alert message will be sent to the waste collector directly. Optimal route selection is carried out using the developed ICVHIOA for efficient collection of wastes from the smart bin. Here, the main objectives of the optimal route selection are to reduce the distance and time to minimize the operational cost and the environmental impacts. The collected waste is then considered for recycling. The performance of the implemented IoT and blockchain-based smart dustbin is evaluated by comparing it with other existing smart dustbins for e-waste management.

Design/methodology/approach

The developed e-waste management system is used to collect the waste and to avoid certain diseases caused by the dumped waste. Disposal and recycling of the e-waste is necessary to decrease pollution and to manufacture new products from the waste.

Findings

The RMSE of the implemented framework was 33.65% better than convolutional neural network (CNN), 27.12% increased than recurrent neural network (RNN), 22.27% advanced than Resnet and 9.99% superior to long short-term memory (LSTM).

Originality/value

The proposed E-waste management system has given an enhanced performance rate in weight prediction and also in optimal route selection when compared with other conventional methods.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 May 2024

Shupeng Liu, Jianhong Shen and Jing Zhang

Learning from past construction accident reports is critical to reducing their occurrence. Digital technology provides feasibility for extracting risk factors from unstructured…

Abstract

Purpose

Learning from past construction accident reports is critical to reducing their occurrence. Digital technology provides feasibility for extracting risk factors from unstructured reports, but there are few related studies, and there is a limitation that textual contextual information cannot be considered during extraction, which tends to miss some important factors. Meanwhile, further analysis, assessment and control for the extracted factors are lacking. This paper aims to explore an integrated model that combines the advantages of multiple digital technologies to effectively solve the above problems.

Design/methodology/approach

A total of 1000 construction accident reports from Chinese government websites were used as the dataset of this paper. After text pre-processing, the risk factors related to accident causes were extracted using KeyBERT, and the accident texts were encoded into structured data. Tree-augmented naive (TAN) Bayes was used to learn the data and construct a visualized risk analysis network for construction accidents.

Findings

The use of KeyBERT successfully considered the textual contextual information, prompting the extracted risk factors to be more complete. The integrated TAN successfully further explored construction risk factors from multiple perspectives, including the identification of key risk factors, the coupling analysis of risk factors and the troubleshooting method of accident risk source. The area under curve (AUC) value of the model reaches up to 0.938 after 10-fold cross-validation, indicating good performance.

Originality/value

This paper presents a new machine-assisted integrated model for accident report mining and risk factor analysis, and the research findings can provide theoretical and practical support for accident safety management.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 May 2024

Panagiotis Karaiskos, Yuvaraj Munian, Antonio Martinez-Molina and Miltiadis Alamaniotis

Exposure to indoor air pollutants poses a significant health risk, contributing to various ailments such as respiratory and cardiovascular diseases. These unhealthy consequences…

Abstract

Purpose

Exposure to indoor air pollutants poses a significant health risk, contributing to various ailments such as respiratory and cardiovascular diseases. These unhealthy consequences are specifically alarming for athletes during exercise due to their higher respiratory rate. Therefore, studying, predicting and curtailing exposure to indoor air contaminants during athletic activities is essential for fitness facilities. The objective of this study is to develop a neural network model designed for predicting optimal (in terms of health) occupancy intervals using monitored indoor air quality (IAQ) data.

Design/methodology/approach

This research study presents an innovative approach employing a long short-term memory (LSTM) recurrent neural network (RNN) to determine optimal occupancy intervals for ensuring the safety and well-being of occupants. The dataset was collected over a 3-month monitoring campaign, encompassing 15 meteorological and indoor environmental parameters monitored. All the parameters were monitored in 5-min intervals, resulting in a total of 77,520 data points. The dataset collection parameters included the building’s ventilation methods as well as the level of occupancy. Initial preprocessing involved computing the correlation matrix and identifying highly correlated variables to serve as inputs for the LSTM network model.

Findings

The findings underscore the efficacy of the proposed artificial intelligence model in forecasting indoor conditions, yielding highly specific predicted time slots. Using the training dataset and established threshold values, the model effectively identifies benign periods for occupancy. Validation of the predicted time slots is conducted utilizing features chosen from the correlation matrix and their corresponding standard ranges. Essentially, this process determines the ratio of recommended to non-recommended timing intervals.

Originality/value

Humans do not have the capacity to process this data and make such a relevant decision, though the complexity of the parameters of IAQ imposes significant barriers to human decision-making, artificial intelligence and machine learning systems, which are different. Present research utilizing multilayer perceptron (MLP) and LSTM algorithms for evaluating indoor air pollution levels lacks the capability to predict specific time slots. This study aims to fill this gap in evaluation methodologies. Therefore, the utilized LSTM-RNN model can provide a day-ahead prediction of indoor air pollutants, making its competency far beyond the human being’s and regular sensors' capacities.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 7 June 2024

This paper aims to review the latest management developments across the globe and pinpoint practical implications from cutting-edge research and case studies.

Abstract

Purpose

This paper aims to review the latest management developments across the globe and pinpoint practical implications from cutting-edge research and case studies.

Design/methodology/approach

This briefing is prepared by an independent writer who adds their own impartial comments and places the articles in context.

Findings

Firms can ensure that the right candidates are hired for the right jobs by identifying close person-environment fit. Use of machine learning algorithms enables HR professionals to make these decisions based on swift, efficient analysis of large volumes of relevant data.

Originality/value

The briefing saves busy executives and researchers hours of reading time by selecting only the very best, most pertinent information and presenting it in a condensed and easy-to-digest format.

Details

Development and Learning in Organizations: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7282

Keywords

Access

Year

Last month (15)

Content type

Earlycite article (15)
1 – 10 of 15