Search results

1 – 5 of 5
Article
Publication date: 3 May 2024

Hui Zhao, Shunzhen Ren, Zhengbo Zhong, Zhipeng Li and Tianhui Ren

This study aims to reveal the tribological mechanism of synergistic effect between MoDTC and P-containing additives in aluminum-based grease.

Abstract

Purpose

This study aims to reveal the tribological mechanism of synergistic effect between MoDTC and P-containing additives in aluminum-based grease.

Design/methodology/approach

The authors prepared a molybdenum dialkyl dithiocarbamate (MoDTC) and revealed the tribological mechanism of synergistic effect between MoDTC and P-containing additives in aluminum-based grease by combining with ZDDP and P-containing and S-free additives.

Findings

The MoDTC the authors prepared has good friction-reducing and anti-wear properties in aluminum-based grease and has an obvious synergistic effect with ZDDP. MoDTC and ZDDP have a significant synergistic effect on the tribological properties in aluminum-based grease, mainly because of the formation of phosphates and metaphosphates as well as more MoS2 in the friction film. P element plays a facilitating role in the chemical conversion of MoDTC to MoS2.

Originality/value

The experiments of MoDTC with tributyl phosphate and trimethylphenyl phosphate confirm that the P element plays a facilitating role in the chemical conversion of MoDTC into MoS2.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0410

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2024

Elena Isabel Vazquez Melendez, Paul Bergey and Brett Smith

This study aims to examine the blockchain landscape in supply chain management by drawing insights from academic and industry literature. It identifies the key drivers…

617

Abstract

Purpose

This study aims to examine the blockchain landscape in supply chain management by drawing insights from academic and industry literature. It identifies the key drivers, categorizes the products involved and highlights the business values achieved by early adopters of blockchain technology within the supply chain domain. Additionally, it explores fingerprinting techniques to establish a robust connection between physical products and the blockchain ledger.

Design/methodology/approach

The authors combined the interpretive sensemaking systematic literature review to offer insights into how organizations interpreted their business challenges and adopted blockchain technology in their specific supply chain context; content analysis (using Leximancer automated text mining software) for concept mapping visualization, facilitating the identification of key themes, trends and relationships, and qualitative thematic analysis (NVivo) for data organization, coding and enhancing the depth and efficiency of analysis.

Findings

The findings highlight the transformative potential of blockchain technology and offer valuable insights into its implementation in optimizing supply chain operations. Furthermore, it emphasizes the importance of product provenance information to consumers, with blockchain technology offering certainty and increasing customer loyalty toward brands that prioritize transparency.

Research limitations/implications

This research has several limitations that should be acknowledged. First, there is a possibility that some relevant investigations may have been missed or omitted, which could impact the findings. In addition, the limited availability of literature on blockchain adoption in supply chains may restrict the scope of the conclusions. The evolving nature of blockchain adoption in supply chains also poses a limitation. As the technology is in its infancy, the authors expect that a rapidly emerging body of literature will provide more extensive evidence-based general conclusions in the future. Another limitation is the lack of information contrasting academic and industry research, which could have provided more balanced insights into the technology’s advancement. The authors attributed this limitation to the narrow collaborations between academia and industry in the field of blockchain for supply chain management.

Practical implications

Practitioners recognize the potential of blockchain in addressing industry-specific challenges, such as ensuring transparency and data provenance. Understanding the benefits achieved by early adopters can serve as a starting point for companies considering blockchain adoption. Blockchain technology can verify product origin, enable truthful certifications and comply with established standards, reinforcing trust among stakeholders and customers. Thus, implementing blockchain solutions can enhance brand reputation and consumer confidence by ensuring product authenticity and quality. Based on the results, companies can align their strategies and initiatives with their needs and expectations.

Social implications

In essence, the integration of blockchain technology within supply chain provenance initiatives not only influences economic aspects but also brings substantial social impacts by reinforcing consumer trust, encouraging sustainable and ethical practices, combating product counterfeiting, empowering stakeholders and contributing to a more responsible, transparent and progressive socioeconomic environment.

Originality/value

This study consolidates current knowledge on blockchain’s capacity and identifies the specific drivers and business values associated with early blockchain adoption in supply chain provenance. Furthermore, it underscores the critical role of product fingerprinting techniques in supporting blockchain for supply chain provenance, facilitating more robust and efficient supply chain operations.

Details

Supply Chain Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1359-8546

Keywords

Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 March 2024

Peter Madzik, Lukas Falat, Luay Jum’a, Mária Vrábliková and Dominik Zimon

The set of 2,509 documents related to the human-centric aspect of manufacturing were retrieved from Scopus database and systmatically analyzed. Using an unsupervised machine…

156

Abstract

Purpose

The set of 2,509 documents related to the human-centric aspect of manufacturing were retrieved from Scopus database and systmatically analyzed. Using an unsupervised machine learning approach based on Latent Dirichlet Allocation we were able to identify latent topics related to human-centric aspect of Industry 5.0.

Design/methodology/approach

This study aims to create a scientific map of the human-centric aspect of manufacturing and thus provide a systematic framework for further research development of Industry 5.0.

Findings

In this study a 140 unique research topics were identified, 19 of which had sufficient research impact and research interest so that we could mark them as the most significant. In addition to the most significant topics, this study contains a detailed analysis of their development and points out their connections.

Originality/value

Industry 5.0 has three pillars – human-centric, sustainable, and resilient. The sustainable and resilient aspect of manufacturing has been the subject of many studies in the past. The human-centric aspect of such a systematic description and deep analysis of latent topics is currently just passing through.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 18 March 2024

Li Liu, Chunhua Zhang, Ping Hu, Sheng Liu and Zhiwen Chen

This paper aims to investigate the moisture diffusion behavior in a system-in-package module systematically by moisture-thermalmechanical-coupled finite element modeling with…

Abstract

Purpose

This paper aims to investigate the moisture diffusion behavior in a system-in-package module systematically by moisture-thermalmechanical-coupled finite element modeling with different structure parameters under increasingly harsh environment.

Design/methodology/approach

A finite element model for a system-in-package module was built with moisture-thermal-mechanical-coupled effects to study the subsequences of hygrothermal conditions.

Findings

It was found in this paper that the moisture diffusion path was mainly dominated by hygrothermal conditions, though structure parameters can affect the moisture distribution. At lower temperatures (30°C~85°C), the direction of moisture diffusion was from the periphery to the center of the module, which was commonly found in simulations and literatures. However, at relatively higher temperatures (125°C~220°C), the diffusion was from printed circuit board (PCB) to EMC due to the concentration gradient from PCB to EMC across the EMC/PCB interface. It was also found that there exists a critical thickness for EMC and PCB during the moisture diffusion. When the thickness of EMC or PCB increased to a certain value, the diffusion of moisture reached a stable state, and the concentration on the die surface in the packaging module hardly changed. A quantified correlation between the moisture diffusion coefficient and the critical thickness was then proposed for structure parameter optimization in the design of system-in-package module.

Originality/value

The different moisture diffusion behaviors at low and high temperatures have seldom been reported before. This work can facilitate the understanding of moisture diffusion within a package and offer some methods about minimizing its effect by design optimization.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Access

Year

Last 3 months (5)

Content type

Earlycite article (5)
1 – 5 of 5