Search results

1 – 10 of 20
Article
Publication date: 16 May 2024

Xingyu Qu, Zhenyang Li, Qilong Chen, Chengkun Peng and Qinghe Wang

In response to the severe lag in tracking the response of the Stewart stability platform after adding overload, as well as the impact of nonlinear factors such as load and…

Abstract

Purpose

In response to the severe lag in tracking the response of the Stewart stability platform after adding overload, as well as the impact of nonlinear factors such as load and friction on stability accuracy, a new error attenuation function and a parallel stable platform active disturbance rejection control (ADRC) strategy combining cascade extended state observer (ESO) are proposed.

Design/methodology/approach

First, through kinematic modeling of the Stewart platform, the relationship between the desired pose and the control quantities of the six hydraulic cylinders is obtained. Then, a linear nonlinear disturbance observer was established to observe noise and load, to enhance the system’s anti-interference ability. Finally, verification was conducted through simulation.

Findings

Finally, stability analysis was conducted on the cascaded observer. Experiments were carried out on a parallel stable platform with six degrees of freedom involving rotation and translation. In comparison to traditional PID and ADRC control methods, the proposed control strategy not only endows the stable platform with strong antiload disturbance capability but also exhibits faster response speed and higher stability accuracy.

Originality/value

A new error attenuation function is designed to address the lack of smoothness at d in the error attenuation function of the ADRC controller, reducing the system ripple caused by it. Finally, a combination of linear and nonlinear ESOs is introduced to enhance the system's response speed and its ability to observe noise and load disturbances. Stability analysis of the cascade observer is carried out, and experiments are conducted on a six-degree-of-freedom parallel stable platform with both rotational and translational motion.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 May 2024

Qingli Lu, Ruisheng Sun and Yu Lu

This paper aims to propose and verify an improved cascade active disturbance rejection control (ADRC) scheme based on output redefinition for hypersonic vehicles (HSVs) with…

Abstract

Purpose

This paper aims to propose and verify an improved cascade active disturbance rejection control (ADRC) scheme based on output redefinition for hypersonic vehicles (HSVs) with nonminimum phase characteristic and model uncertainties.

Design/methodology/approach

To handle the nonminimum phase characteristic, a tuning factor stabilizing internal dynamics is introduced to redefine the system output states; its effective range is determined by analyzing Byrnes–Isidori normalized form of the redefined system. The extended state observers (ESOs) are used to estimate the uncertainties, which include matched and mismatched items in the system. The controller compensates observations in real time and appends integral terms to improve robustness against the estimation errors of ESOs.

Findings

Theoretical and simulation results show that the stability of internal dynamics is guaranteed by the tuning factor and the tracking errors of external commands are globally asymptotically stable.

Practical implications

The control scheme in this paper is expected to generate a reliable way for dealing with nonminimum phase characteristic and model uncertainties of HSVs.

Originality/value

In the framework of ADRC, a concise form of redefined outputs is proposed, in which the tuning factor performs a decisive role in stabilizing the internal dynamics of HSVs. By introducing an integral term into the cascade ADRC scheme, the compensation accuracy of matched and mismatched disturbances is improved.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 May 2024

Jun Tian, Xungao Zhong, Xiafu Peng, Huosheng Hu and Qiang Liu

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between…

Abstract

Purpose

Visual feedback control is a promising solution for robots work in unstructured environments, and this is accomplished by estimation of the time derivative relationship between the image features and the robot moving. While some of the drawbacks associated with most visual servoing (VS) approaches include the vision–motor mapping computation and the robots’ dynamic performance, the problem of designing optimal and more effective VS systems still remains challenging. Thus, the purpose of this paper is to propose and evaluate the VS method for robots in an unstructured environment.

Design/methodology/approach

This paper presents a new model-free VS control of a robotic manipulator, for which an adaptive estimator aid by network learning is proposed using online estimation of the vision–motor mapping relationship in an environment without the knowledge of statistical noise. Based on the adaptive estimator, a model-free VS schema was constructed by introducing an active disturbance rejection control (ADRC). In our schema, the VS system was designed independently of the robot kinematic model.

Findings

The various simulations and experiments were conducted to verify the proposed approach by using an eye-in-hand robot manipulator without calibration and vision depth information, which can improve the autonomous maneuverability of the robot and also allow the robot to adapt its motion according to the image feature changes in real time. In the current method, the image feature trajectory was stable in the camera field range, and the robot’s end motion trajectory did not exhibit shock retreat. The results showed that the steady-state errors of image features was within 19.74 pixels, the robot positioning was stable within 1.53 mm and 0.0373 rad and the convergence rate of the control system was less than 7.21 s in real grasping tasks.

Originality/value

Compared with traditional Kalman filtering for image-based VS and position-based VS methods, this paper adopts the model-free VS method based on the adaptive mapping estimator combination with the ADRC controller, which is effective for improving the dynamic performance of robot systems. The proposed model-free VS schema is suitable for robots’ grasping manipulation in unstructured environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 May 2024

Gan Zhan, Zhihua Chen, Zhenyu Zhang, Jigang Zhan, Wentao Yu and Jiehao Li

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking…

Abstract

Purpose

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking control architecture that integrates perception, planning, and motion control.

Design/methodology/approach

Firstly, the proposed dynamic docking control architecture uses laser sensors and a charge-coupled device camera to perceive the pose of the target. The sensor data are mapped to a high-dimensional potential field space and fused to reduce interference caused by detection noise. Next, a new potential function based on multi-dimensional space is developed for docking path planning, which enables the docking mechanism based on Stewart platform to rapidly converge to the target axis of the locking mechanism, which improves the adaptability and terminal docking accuracy of the docking state. Finally, to achieve precise tracking and flexible docking in the final stage, the system combines a self-impedance controller and an impedance control algorithm based on the planned trajectory.

Findings

Extensive simulations and experiments have been conducted to validate the effectiveness of the dynamic docking system and its control architecture. The results indicate that even if the target moves randomly, the system can successfully achieve accurate, stable and flexible dynamic docking.

Originality/value

This research can provide technical guidance and reference for docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 November 2023

Sharaf AlKheder, Hajar Al Otaibi, Zahra Al Baghli, Shaikhah Al Ajmi and Mohammad Alkhedher

Megaproject's construction is essential for the development and economic growth of any country, especially in the developing world. In Kuwait, megaprojects are facing many…

Abstract

Purpose

Megaproject's construction is essential for the development and economic growth of any country, especially in the developing world. In Kuwait, megaprojects are facing many restrictions that discourage their execution causing a significant delay in bidding, design, construction and operation phases with the execution quality being affected. The objective of this study is to develop a complexity measurement model using analytic hierarchy process (AHP) for megaprojects in Kuwait, with a focus on the New Kuwait University multi-billion campus Shadadiyah (College of Social Science, Sharia and Law (CSSL)) as a case study.

Design/methodology/approach

The study applies a hybrid fuzzy analytic hierarchy process (FAHP) method to compare the results with those obtained using the conventional AHP method. This can facilitate the project management activities during the different stages of construction. Data were collected based on the results of a two-round Delphi questionnaire completed by seniors and experts of the selected project.

Findings

It was found that project modeling methodology was responsible for complexity. It was grouped under several categories that include technological, goal, organizational, environmental and cultural complexities. The study compares complexity degrees assessed by AHP and FAHP methods. “Technological Complexity” scores highest in both methods, with FAHP reaching 7.46. “Goal Complexity” follows closely behind, with FAHP. “Cultural Complexity” ranks third, differing between methods, while “Organizational” and “Environmental Complexity” consistently score lower, with FAHP values slightly higher. These results show varying complexity levels across dimensions. Assessing and understanding such complexities were essential toward the completion of such megaprojects.

Originality/value

The contribution of this study is on providing the empirical evidential knowledge for the priority over construction complexities in a developing country (Kuwait) in the Middle East.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 May 2024

Mingze Wang, Yuhe Yang and Yuliang Bai

This paper aims to present a novel adaptive sliding mode control (ASMC) method based on the predefined performance barrier function for reusable launch vehicle under attitude…

Abstract

Purpose

This paper aims to present a novel adaptive sliding mode control (ASMC) method based on the predefined performance barrier function for reusable launch vehicle under attitude constraints and mismatched disturbances.

Design/methodology/approach

A novel ASMC based on barrier function is adopted to deal with matched and mismatched disturbances. The upper bounds of the disturbances are not required to be known in advance. Meanwhile, a predefined performance function (PPF) with prescribed convergence time is used to adjust the boundary of the barrier function. The transient performance, including the overshoot, convergence rate and settling time, as well as the steady-state performance of the attitude tracking error are retained in the predetermined region under the barrier function and PPF. The stability of the proposed control method is analyzed via Lyapunov method.

Findings

In contrast to conventional adaptive back-stepping methods, the proposed method is comparatively simple and effective which does not need to disassemble the control system into multiple first-order systems. The proposed barrier function based on PPF can adjust not only the switching gain in an adaptive way but also the convergence time and steady-state error. And the efficiency of the proposed method is illustrated by conducting numerical simulations.

Originality/value

A novel barrier function based ASMC method is proposed to fit in the amplitude of the mismatched and matched disturbances. The transient and steady-state performance of attitude tracking error can be selected as prior control parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 7 July 2023

Vinayambika S. Bhat, Thirunavukkarasu Indiran, Shanmuga Priya Selvanathan and Shreeranga Bhat

The purpose of this paper is to propose and validate a robust industrial control system. The aim is to design a Multivariable Proportional Integral controller that accommodates…

99

Abstract

Purpose

The purpose of this paper is to propose and validate a robust industrial control system. The aim is to design a Multivariable Proportional Integral controller that accommodates multiple responses while considering the process's control and noise parameters. In addition, this paper intended to develop a multidisciplinary approach by combining computational science, control engineering and statistical methodologies to ensure a resilient process with the best use of available resources.

Design/methodology/approach

Taguchi's robust design methodology and multi-response optimisation approaches are adopted to meet the research aims. Two-Input-Two-Output transfer function model of the distillation column system is investigated. In designing the control system, the Steady State Gain Matrix and process factors such as time constant (t) and time delay (?) are also used. The unique methodology is implemented and validated using the pilot plant's distillation column. To determine the robustness of the proposed control system, a simulation study, statistical analysis and real-time experimentation are conducted. In addition, the outcomes are compared to different control algorithms.

Findings

Research indicates that integral control parameters (Ki) affect outputs substantially more than proportional control parameters (Kp). The results of this paper show that control and noise parameters must be considered to make the control system robust. In addition, Taguchi's approach, in conjunction with multi-response optimisation, ensures robust controller design with optimal use of resources. Eventually, this research shows that the best outcomes for all the performance indices are achieved when Kp11 = 1.6859, Kp12 = −2.061, Kp21 = 3.1846, Kp22 = −1.2176, Ki11 = 1.0628, Ki12 = −1.2989, Ki21 = 2.454 and Ki22 = −0.7676.

Originality/value

This paper provides a step-by-step strategy for designing and validating a multi-response control system that accommodates controllable and uncontrollable parameters (noise parameters). The methodology can be used in any industrial Multi-Input-Multi-Output system to ensure process robustness. In addition, this paper proposes a multidisciplinary approach to industrial controller design that academics and industry can refine and improve.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 May 2024

Mohaddese Geraeli and Emad Roghanian

The current research has developed a novel method to update the decisions regarding real-time data, named the dynamic adjusted real-time decision-making (DARDEM), for updating the…

Abstract

Purpose

The current research has developed a novel method to update the decisions regarding real-time data, named the dynamic adjusted real-time decision-making (DARDEM), for updating the decisions of a grocery supply chain that avoids both frequent modifications of decisions and apathy. The DARDEM method is an integration of unsupervised machine learning and mathematical modeling. This study aims to propose a dynamic proposed a dynamic distribution structure and developed a bi-objective mixed-integer linear program to make distribution decisions along with supplier selection in the supply chain.

Design/methodology/approach

The constantly changing environment of the grocery supply chains shows the necessity for dynamic distribution systems. In addition, new disruptive technologies of Industry 4.0, such as the Internet of Things, provide real-time data availability. Under such conditions, updating decisions has a crucial impact on the continued success of the supply chains. Optimization models have traditionally relied on estimated average input parameters, making it challenging to incorporate real-time data into their framework.

Findings

The proposed dynamic distribution and DARDEM method are studied in an e-grocery supply chain to minimize the total cost and complexity of the supply chain simultaneously. The proposed dynamic structure outperforms traditional distribution structures in a grocery supply chain, particularly when there is higher demand dispersion. The study showed that the DARDEM solution, the online solution, achieved an average difference of 1.54% compared to the offline solution, the optimal solution obtained in the presence of complete information. Moreover, the proposed method reduced the number of changes in downstream and upstream decisions by 30.32% and 40%, respectively, compared to the shortsighted approach.

Originality/value

Introducing a dynamic distribution structure in the supply chain that can effectively manage the challenges posed by real-time demand data, providing a balance between distribution stability and flexibility. The research develops a bi-objective mixed-integer linear program to make distribution decisions and supplier selections in the supply chain simultaneously. This model helps minimize the total cost and complexity of the e-grocery supply chain, providing valuable insights into decision-making processes. Developing a novel method to determine the status of the supply chain and online decision-making in the supply chain based on real-time data, enhancing the adaptability of the system to changing conditions. Implementing and analyzing the proposed MILP model and the developed real-time decision-making method in a case study in a grocery supply chain.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Access

Year

Last 12 months (20)

Content type

Earlycite article (20)
1 – 10 of 20