Search results

1 – 10 of 152
Article
Publication date: 5 July 2023

Emil Georgiev and Svetoslav Georgiev

The authors extend the literature on decoupling by analyzing the microlevel effects of institutionalized practices within the framework of international standards. This study…

Abstract

Purpose

The authors extend the literature on decoupling by analyzing the microlevel effects of institutionalized practices within the framework of international standards. This study investigates the specific informal management practices that decision-makers embrace in order for organizations to achieve ISO 9001 certification without all regulations being adopted and followed according to the standard's original design and purpose.

Design/methodology/approach

As the basis for its research framework, this paper adopts the neo-institutional theory. The research employs the comparative case study method and draws its data from a sample of 21 ISO 9001:2008 certified organizations in Bulgaria.

Findings

The results show ambivalent behavior toward the ISO 9001 standard's formal requirements. This behavior is expressed through targeted noncompliance with (certain) regulations and procedures regarding top management commitment, as well as documented information which are formally adopted within the organization and certified as complying with the standard.

Research limitations/implications

The study has implications for future research into decoupling, organizational learning, and standardization. In terms of limitations, the authors examined the process of decoupling from a micro perspective in Bulgaria only. Noncompliance with international standards such as the ISO 9000 may exhibit specific regional or national characteristics.

Practical implications

Findings from this research encourage the International Standards Organization to respond to previous calls for revising the formal structure of ISO 9000 and other international management standards by considering a more flexible and liberal point of view.

Originality/value

As opposed to previous studies which have explored decoupling from a macro perspective, this study focuses on how the internal constraints imposed by the standard's universal requirements are being mitigated at a micro level. That is, the authors provide a detailed account of the specific informal management practices which managers (deliberately) adopt in order to achieve certification without fully integrating the formal criteria imposed by international standards (e.g. ISO 9001).

Details

Benchmarking: An International Journal, vol. 31 no. 5
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 7 May 2024

Job Maveke Wambua, Fredrick Madaraka Mwema, Stephen Akinlabi, Martin Birkett, Ben Xu, Wai Lok Woo, Mike Taverne, Ying-Lung Daniel Ho and Esther Akinlabi

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also…

Abstract

Purpose

The purpose of this paper is to present an optimisation of four-point star-shaped structures produced through additive manufacturing (AM) polylactic acid (PLA). The study also aims to investigate the compression failure mechanism of the structure.

Design/methodology/approach

A Taguchi L9 orthogonal array design of the experiment is adopted in which the input parameters are resolution (0.06, 0.15 and 0.30 mm), print speed (60, 70 and 80 mm/s) and bed temperature (55°C, 60°C, 65°C). The response parameters considered were printing time, material usage, compression yield strength, compression modulus and dimensional stability. Empirical observations during compression tests were used to evaluate the load–response mechanism of the structures.

Findings

The printing resolution is the most significant input parameter. Material length is not influenced by the printing speed and bed temperature. The compression stress–strain curve exhibits elastic, plateau and densification regions. All the samples exhibit negative Poisson’s ratio values within the elastic and plateau regions. At the beginning of densification, the Poisson’s ratios change to positive values. The metamaterial printed at a resolution of 0.3 mm, 80 mm/s and 60°C exhibits the best mechanical properties (yield strength and modulus of 2.02 and 58.87 MPa, respectively). The failure of the structure occurs through bending and torsion of the unit cells.

Practical implications

The optimisation study is significant for decision-making during the 3D printing and the empirical failure model shall complement the existing techniques for the mechanical analysis of the metamaterials.

Originality/value

To the best of the authors’ knowledge, for the first time, a new empirical model, based on the uniaxial load response and “static truss concept”, for failure mechanisms of the unit cell is presented.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 March 2024

Jake Rom Cadag

This paper is a critique of Western modernity and the problems and promises of postmodernism in (re)liberating disaster studies. It criticizes metanarratives and grand theories of…

Abstract

Purpose

This paper is a critique of Western modernity and the problems and promises of postmodernism in (re)liberating disaster studies. It criticizes metanarratives and grand theories of Western discourses to advance postmodern discourses in disaster studies.

Design/methodology/approach

This paper outlines a conceptual domain through which approaches of postmodernism can be employed to (re)liberate disaster studies.

Findings

Metanarratives and grand theories frame the scope and focus of disaster studies. But the increasing number and the aggravated impacts of disasters and environmental challenges in the late 20th and early 21st centuries are proofs that our current “frames” do not capture the complexities of disasters. Postmodernism, in its diversity and various meanings, offers critical and complementary perspectives and approaches to capture the previously neglected dimensions of disasters.

Research limitations/implications

Postmodernism offers ways forward to (re)liberate disaster studies through ontological pluralism, epistemological diversity and hybridity of knowledge.

Originality/value

The agenda of postmodernism in disaster studies is proposed in terms of the focus of inquiry, ontological and epistemological positionalities, research paradigm, methodologies and societal goals.

Details

Disaster Prevention and Management: An International Journal, vol. 33 no. 3
Type: Research Article
ISSN: 0965-3562

Keywords

Article
Publication date: 19 May 2023

Phong Ba Le and Yen Hai Do

Due to the vital role of innovation for firms to respond to the change and achieve competitive advantage, the purpose of this study is to investigate the influence of…

Abstract

Purpose

Due to the vital role of innovation for firms to respond to the change and achieve competitive advantage, the purpose of this study is to investigate the influence of knowledge-oriented leadership (KOL) on innovation performance (IP) via the mediating role of knowledge sharing (KS). This study also clarifies the KS-IP relationship by exploring the moderating role of market turbulence.

Design/methodology/approach

Analysis of moment structures and structural equation modeling are applied to examine the relationship among the latent factors in the proposed research model using data collected from 281 participants in 112 manufacturing and service firms in Vietnam.

Findings

The findings revealed that KOL serves as a key precursor to foster IP, directly or indirectly, through knowledge-oriented leaders’ effect on tacit and explicit KS behaviors. In addition, the paper highlights the moderating role of market turbulence in strengthening the impact of KS activities on IP.

Research limitations/implications

By highlighting the important role KOL practice for stimulating KS behaviors, this paper provides a valuable understanding and novel approach for firms to improve IP. The research findings support the idea that market turbulence significantly contributes to increasing the effects of KS behaviors on IP.

Originality/value

This study contributes to bridging research gaps in the literature and advances the insights of how KOL directly and indirectly fosters IP via mediating roles of tacit and explicit KS processes under the effects of market turbulence.

Details

International Journal of Innovation Science, vol. 16 no. 3
Type: Research Article
ISSN: 1757-2223

Keywords

Open Access
Article
Publication date: 25 December 2023

Anna Trubetskaya, Alan Ryan, Daryl John Powell and Connor Moore

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk…

Abstract

Purpose

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk volumes. Further capacity gains may be achieved by extending the processing season into the winter, a key enabler for which being the reduction of duration of the winter maintenance overhaul period. This paper aims to investigate if Lean Six Sigma tools and techniques can be used to enhance operational maintenance performance, thereby releasing additional processing capacity.

Design/methodology/approach

Combining the Six-Sigma Define, Measure, Analyse, Improve, Control (DMAIC) methodology and the structured approach of Turnaround Maintenance (TAM) widely used in process industries creates a novel hybrid model that promises substantial improvement in maintenance overhaul execution. This paper presents a case study applying the DMAIC/TAM model to Ireland’s largest dairy processing site to optimise the annual maintenance shutdown. The objective was to deliver a 30% reduction in the duration of the overhaul, enabling an extension of the processing season.

Findings

Application of the DMAIC/TAM hybrid resulted in process enhancements, employee engagement and a clear roadmap for the operations team. Project goals were delivered, and original objectives exceeded, resulting in €8.9m additional value to the business and a reduction of 36% in the duration of the overhaul.

Practical implications

The results demonstrate that the model provides a structure that promotes systematic working and a continuous improvement focus that can have substantial benefits for wider industry. Opportunities for further model refinement were identified and will enhance performance in subsequent overhauls.

Originality/value

To the best of the authors’ knowledge, this is the first time that the structure and tools of DMAIC and TAM have been combined into a hybrid methodology and applied in an Irish industrial setting.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 May 2024

Vishal Kumar and Amitava Mandal

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior…

Abstract

Purpose

Wire-arc-based additive manufacturing (WAAM) is a promising technology for the efficient and economical fabrication of medium-large components. However, the anisotropic behavior of the multilayered WAAM-fabricated components remains a challenging problem.

Design/methodology/approach

The purpose of this paper is to conduct a comprehensive study of the grain morphology, crystallographic orientation and texture in three regions of the WAAM printed component. Furthermore, the interdependence of the grain morphology in different regions of the fabricated component with their mechanical and tribological properties was established.

Findings

The electron back-scattered diffraction analysis of the top and bottom regions revealed fine recrystallized grains, whereas the middle regions acquired columnar grains with an average size of approximately 8.980 µm. The analysis revealed a higher misorientation angle and an intense crystallographic texture in the upper and lower regions. The investigations found a higher microhardness value of 168.93 ± 1.71 HV with superior wear resistance in the bottom region. The quantitative evaluation of the residual stress detected higher compressive stress in the upper regions. Evidence for comparable ultimate tensile strength and greater elongation (%) compared to its wrought counterpart has been observed.

Originality/value

The study found a good correlation between the grain morphology in different regions of the WAAM-fabricated component and their mechanical and wear properties. The Hall–Petch relationship also established good agreement between the grain morphology and tensile test results. Improved ductility compared to its wrought counterpart was observed. The anisotropy exists with improved mechanical properties along the longitudinal direction. Moreover, cylindrical components have superior tribological properties compared with cuboidal components.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 May 2024

Tudor George Alexandru, Diana Popescu, Stochioiu Constantin and Florin Baciu

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand…

Abstract

Purpose

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand orthoses. These orthoses were 3D printed flat, heated and molded to fit the patient’s hand. The advantages of such an approach include reduced production time and cost.

Design/methodology/approach

The study used both experimental and numerical methods to analyze the thermoforming process of PLA parts. Thermal and mechanical characteristics were determined at different temperatures and infill densities. An equivalent material model that considers infill within a print is proposed. Its practical use was proven using a coupled finite-element analysis model. The simulation strategy enabled a comparative analysis of the thermoforming behavior of orthoses with two designs by considering the combined impact of natural convection cooling and imposed structural loads.

Findings

The experimental results indicated that at 27°C and 35°C, the tensile specimens exhibited brittle failure irrespective of the infill density, whereas ductile behavior was observed at 45°C, 50°C and 55°C. The thermal conductivity of the material was found to be linearly related to the temperature of the specimen. Orthoses with circular open pockets required more time to complete the thermoforming process than those with hexagonal pockets. Hexagonal cutouts have a lower peak stress owing to the reduced reaction forces, resulting in a smoother thermoforming process.

Originality/value

This study contributes to the existing literature by specifically focusing on the thermoforming process of 3D-printed parts made from PLA. Experimental tests were conducted to gather thermal and mechanical data on specimens with two infill densities, and a finite-element model was developed to address the thermoforming process. These findings were applied to a comparative analysis of 3D-printed thermoformed wrist-hand orthoses that included open pockets with different designs, demonstrating the practical implications of this study’s outcomes.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 14 May 2024

Stephen Oduro

The study aims to build upon the Resource-based view of the firm (RBV) and Dynamic Capability Theory (DCT) to perform a meta-analysis on the eco-innovation/SMEs’ sustainable…

Abstract

Purpose

The study aims to build upon the Resource-based view of the firm (RBV) and Dynamic Capability Theory (DCT) to perform a meta-analysis on the eco-innovation/SMEs’ sustainable performance relationship.

Design/methodology/approach

Employing a psychometric meta-analytic approach with a random-effects model, the study examines a sample of 134,841 SMEs covering 99 studies and 233 study effects. Subgroup and meta-regression analysis were used to test the study`s hypotheses in Comprehensive Meta-Analysis (CMA) statistical software.

Findings

Results unveil that the average impact of eco-innovation on SMEs` sustainable performance is positively significant but moderate. Moreover, it was found that eco-process, eco-product, eco-organizational, and eco-marketing innovations positively influence SMEs’ sustainable performance, but the impact of eco-organizational innovation is the strongest. Findings further reveal that eco-innovation positively influences economic, social, and environmental performance, but its effect on social performance is the largest. Moreover, our findings reveal that contextual factors, including industry type, culture, industry intensity, global sustainable competitive index, and human development index, moderate the eco-innovation/SMEs’ sustainable performance relationship. Lastly, methodological factors, namely sampling technique, study type, and publication status, account for study-study variance.

Practical implications

Our findings imply that investing in eco-innovation is worthwhile for SMEs. Therefore, CEOs/managers of SMEs must adopt eco-innovation initiatives by establishing a sustainability vision, developing employee environmental development and training, building a stakeholder management system, and promoting employee engagement in sustainability activities.

Originality/value

The study develops a holistic conceptual framework to consolidate the distinct types of eco-innovation and their association with the sustainable performance of SMEs for the first time in this research stream, thereby resolving the anecdotal results and synthesizing the fragmented literature across culture, discipline, and contexts.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Access

Year

Last week (152)

Content type

Article (152)
1 – 10 of 152