Search results

1 – 3 of 3
Article
Publication date: 6 December 2022

Khaled Mostafa, Heba Ameen and Ahmed Medhat

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent…

Abstract

Purpose

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent process. This was done for rendering cotton dye-able with Acid Blue 284, which in fact does not have any direct affinity to fix on it.

Design/methodology/approach

Dyeing characteristics of the samples such as color strength (K/S), fastness properties to light, rubbing and perspiration and durability, as well as tensile strength, elongation at break, whiteness, weight loss and wettability in addition to zeta potential of the dyed samples, were determined and compared with untreated fabric. Confirmation and characterization of the plasma-treated samples via chemical modifications and zeta potential was also studied using Fourier transform infrared spectroscopy (FTIR) and Malvern Zetasizer instrumental analysis.

Findings

The obtained results of the plasma-treated fabric reflect the following findings: FTIR results indicate the formation of nitrogen-containing groups on cotton fabrics; notable enhancement in the fabric wettability, zeta potential to more positive values and improvement in the dyeability and overall fastness properties of treated cotton fabrics in comparison with untreated fabric; the tensile strength, elongation at break, whiteness and weight % of the plasma treated fabrics are lower than that untreated one; and the durability of the plasma treated fabric decreased with increasing the number of washing cycles.

Originality/value

The novelty addressed here is rendering cotton fabrics dye-able with acid dye via the creation of new cationic nitrogen-containing groups on their surface via nitrogen plasma treatment as an eco-friendly and efficient tool with a physical/zero-effluent process.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

558

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 May 2024

Feng Zhou, S. S. Lu, B. Jiang and R.G. Song

This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.

Abstract

Purpose

This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.

Design/methodology/approach

This study involved immersion experiments, electrochemical experiments and slow strain rate tensile experiments, along with scanning electron microscopy, optical microscopy observation and X-ray diffraction analysis.

Findings

The findings suggest that annealing treatment can refine the grain size of AZ31 magnesium alloy to an average of 6.9 µm at 300°C. The change in grain size leads to a change in conductivity, which affects the performance of MAO coatings. The MAO coating obtained by annealing the substrate at 300°C has smaller pores and porosity, resulting in better adhesion and wear resistance.

Originality/value

The coating acts as a barrier to prevent corrosive substances from entering the substrate. However, the smaller pores and porosity reduce the channels for the corrosive solution to pass through the coating. When the coating cracks or falls off, the corrosive medium and substrate come into direct contact. Smaller and uniform grains have better corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

Last week (3)

Content type

Article (3)
1 – 3 of 3