Maritime Logistics

Cover of Maritime Logistics

Contemporary Issues



Table of contents

(16 chapters)


Page i
Click here to view access options


Pages 1-2
Click here to view access options



This chapter reviews and analyses the contemporary development of liner shipping, port development and competition. It begins with a comprehensive review on the latest developmental trends of liner shipping and business strategies, as well as their impacts on port development and competition. Then, it discusses the responses of ports, past, present and (likely) future, in addressing these new demands and challenges. A very important point from this analysis indicates that, in the past decade, port development and competition have gradually evolved from being individual, technical efficiency-oriented to become more regional, economic efficiency-oriented. At the same time, ports have also moved out of their rather passive positions and undertaken positive steps to avert the traditionally strong bargaining power of shipping lines. This illustrates that port development and competition is a continuous morphological process which can change dramatically within a rather short period of time. This chapter provides a new perspective on port development and competition and a decent platform for further research.


This chapter explains the impact containerisation has on the various partners of the global supply chain and the challenges companies encounter and the solutions they use in dealing with empty container repositioning.

The phenomenon of imbalanced container flows and its impact on shipping lines, shippers, container haulage companies, port development and the economy are presented. Special attention is given to explain the many solutions companies use to reduce the impact of empty container repositioning, hence tracing out the past research that led to these solutions and pointing to potentially new research directions in the future.

Because of the widespread use of containerisation and the imbalanced container flows that results from globalisation, empty container repositioning will be an ongoing issue for the maritime logistics industry. Many solutions are being used, but there is room for improvement and more research is needed.

Empty container repositioning is an important issue but has not been deemed as such in the literature. This chapter explains the reasons it is important and that its impact is not limited to shipping lines only but affects the whole supply chain.


Ports are widely recognised as crucial nodes in international trade and transport. However, for various reasons, capacity does not always match demand: sometimes there is overcapacity, whereas in other cases, demand exceeds capacity and there is a shortage of the latter. This chapter therefore looks at where port congestion occurs, both globally and in the port-calling chain; it analyses actual responses by various chain actors, and it sheds some light on potential future evolution and reaction patterns.

Congestion, in general, can feature various forms of appearance: it can be more or less hidden, featuring congestion costs, or it can be visually present, featuring queues which are building up. The chapter discerns eight zones in the port-calling chain where congestion may emerge. As a result of a wide literature search, supplemented with a survey, it can first of all be observed that quite some congestion seems to occur, globally spread, and hitting larger as well as smaller ports. Most of the congestion is generated at the terminals, hinterland connection points and hinterland transport itself.

In terms of reaction patterns, one would assume that pricing throughout the system is adapted in such way that demand equals capacity. In practice, prices are hardly making any effort to make marginal revenue equal marginal cost. The reason is mainly that the power balance is quite strongly in favour of shipping companies, who impose on port and port operators the need to expand capacity at low fees. Port operators, in turn, apply various kinds of technical and procedural adaptations. The same is true for hinterland operators.

Looking towards the future, it seems that with the increase in world trade, the risk of port congestion will be even more outspoken, be it in some parts of the world more than in others. It is also very much likely that most problems will occur landside, as this is the part of the chain where solutions are least easy: who is going to take the initiative, how will co-ordination take place and where will the funding come from? Most actors seem to be aware of this trend, and seek for solutions like dedicated terminals and vertical integration or co-operation.

With the above observations, the chapter sheds some light on where the future needs and trends in the abatement of capacity will lie. It is therefore useful from a scientific point of view as well as with an eye on policy-making and operational port management.


The aim of this chapter is to identify factors that have been affecting the increase of transhipment (T/S) cargoes of the port of Busan and to explore how these factors can be utilised more effectively to attract and increase T/S cargoes through the development of a port choice model using the technique of system dynamics (SD). To clarify the reason why T/S cargoes have increased in the port of Busan, several steps have been taken as follows.

The first step was to design a quantitative model to explain the development of T/S cargoes during the last decade. The second step was to define dependent and independent variables for multiple regressions after testing variable significance. For this, data collection and the accuracy of validation have been achieved by using the direct interview procedure involving experienced experts from both Korean and foreign shipping companies. After validating the model with the collected data, the final step was to find variables that confidently explain the model.

It is found that two variables are clearly identified as core factors that describe well the development of T/S cargoes in the port of Busan: ‘Mohring effect’ and total cost. Further, it is strongly recommended, through this empirical study, that an incentive scheme be changed to the way in which more feeder vessels rather than mother vessels can reduce their direct costs to call at the port of Busan.

Based on regression analysis, it is also found that the sensitivity model for transhipment cargo is useful for dynamic forecasting in changing the cost factor and Mohring factor with time-series technique.


Despite a hangover from the worldwide economic crisis, international trade rebounded nicely with a record-level growth in late 2010. A sharp rise in international trade has sparked the international traffic growth. A majority of this traffic growth originated from maritime logistics which could move cargoes in large volume and at cheaper freight costs. Due to its cost-efficiency and easy access, maritime logistics typically accounts for more than half of the worldwide freight volume. However, maritime logistics poses a greater supply chain risk, since ocean carriers used for maritime logistics are more vulnerable to unpredictable weather conditions, piracy attacks, terrorist hijacking, and cargo damages on the open sea than any other modes of transportation. Also, given the vast areas that maritime logistics covers, it is more difficult to protect maritime logistics activities from potential hazards and threats.

To better protect maritime logistics activities from potential security lapses, this chapter introduces and develops a variety of systematic security measures and tools that were successfully used by best-in-class companies and government entities across the world. Also, this chapter proposes a total maritime security management model as a way to formulate maritime risk mitigation strategies. To elaborate, this chapter sheds light on the roots of maritime security measures and tools, the ways that those measures and tools are best utilized, the roles of advanced information technology in maritime security from the global supply chain perspectives, the visualization and identification of potential maritime and its related supply chain risks, and policy guidelines that will help enhance maritime security.


This study aims to critically review and analyse the classification of supply chain risks and disruptions and thereby suggest a suitable method for classifying maritime risks. It aims to discuss the propagation effects of port disruption on the supply chain and mitigation strategies.

In addition to secondary research, six semi-structured interviews were conducted with the management personnel of two terminal operators, two shipping lines and two insurance companies.

When a port disruption happens, the most immediate impact is the adverse effects on terminal operations. It also leads to a domino effect on other parties in the supply chain including shippers and consignees, shipping companies, inter-modal transport providers and other ports. Proper risk management needs to be embraced by the supply chain members. However, there is very little or no such collaboration between the supply chain members in practice.

This article proposes a more integrative approach in assessing various kinds of risks, and more research in this area to be done for Asia.

Risk management has been the concern for many stakeholders ranging from industry practitioners to the people who are affected by the maritime business throughout the world. The maritime industry should look into risk management in the maritime logistics and supply chain context instead of dealing with risk in isolation.

There is a serious lack of research for analysing supply chain disruptions with ports as a focal point. The paper contributes by filling the research gap.


A trend in modern supply chain management has been to substitute information for inventory. In this chapter, an approach to how information and communication technology can be used to achieve this in a maritime logistics context is outlined and described based upon a bulk shipping case.

The approach used is based on data-driven modeling and analysis, in which current logistics and commodity storage costs are benchmarked against a “best possible solution.”

To make a new solution operative, a change should be made based upon an analytical decision-making approach, ICT infrastructure development, and inter-organizational development. Thus, the proper use of analytical and transactional information and communication technology in maritime logistics would enable logistics chain stakeholders to track stock levels and ultimately allocate vessels to move cargo when that is logistically most cost effective. Further, this could support a development in the contractual relationships between producer and shipping line changing from a Contract of Affreightment to a Service Level Agreement relationship.

There is room for enhanced use of information and communication technology to provide decision and operational support at strategic, tactical, and operational levels within maritime logistics. This chapter explains some of the driving forces for this, together with a tested approach and method for this, given into a specific, practical case.


The chapter analyses the ways actors in seaports are embedded in network configurations and develop Business to Business (B-2-B) relations. It also discusses the ways that the latter relations result in functional and relational values. The emphasis is on the presence of port value chains, wherein positioning and effective networking contribute to the total value proposition to the involved actors.

The chapter grounds on a literature review on B-2-B relations and the role of interdependencies developed between stakeholders within industrial markets. The empirical data discussed afterwards lead to the identification and analysis of the different types of interdependencies that might be found within port settings. In this context, the concept of port value chains is put forward. Interdependencies are attached to the various relationships developed between port stakeholders, in order to derive meaningful conclusions. The research is based and data provided through semi-structured interviews with major port stakeholders (e.g. port authorities, shipping lines, freight forwarders etc.) in a number of European seaports (Antwerp, Zeebrugge, Piraeus etc.).

The importance of co-creation of value via matching resources with upstream and downstream entities is established. The chapter also details how actors interdependence as a significant variable determining the level of co-creating value. The empirical analysis provides insights about the existence of three types of interdependencies in ports (namely, serial, pooled and reciprocal) that are found in a number of distinctive relationships developed between, terminal operators, freight forwarders, shipping lines and other key port actors.

In reference to future research, two fields are identified and are worth to be examined in terms of both academic and practical scope. These are the examination of relationship management and of the value generated in seaports respectively.

The present chapter is a first attempt to link port stakeholders’ interdependencies with relationships generated throughout the process, and generate knowledge on what influences the value offered in seaports. Moreover, the innovative concept of port value chains is established.


There is significant amount of literature tackling different issues related to the port industry. The present chapter focuses on a single business unit of seaports aiming at the documentation of works related to container terminals.

An effort to review, collect and present the majority of the works present in the last 30 years, between 1980 and 2010, has been made in order to picture the problems dealt and methods used by the authors in the specific research field. To facilitate the reader, studies have been grouped under five categories of addressed problems (productivity and competitiveness, yard and equipment utilization, equipment scheduling, berth planning, loading/unloading) and four modelling methodologies (mathematics and operations research, management and economics, simulation, stochastic modelling).

The analysis shows that most works focus on productivity and competitiveness issues followed by yard and equipment utilisation and equipment scheduling. In reference to the methodologies used managerial and economic approaches lead, followed by mathematics and operations research.

In reference to future research, two fields have been identified where there is scope of significant contribution by the academic community: container terminal security and container terminal supply chain integration.

The present chapter provides the framework for researchers in the field of port container terminals to picture the so far works in this research area and enables the identification of gaps at both research question and methodology level for further research.



This chapter discusses the concept of corporate social responsibility (CSR) within the context of the container liner shipping industry. It looks at the current practice of CSR in this industry and outlines the framework, the reasons and the drivers for companies to adopt and implement a CSR strategy. These include, among others, the increasing commitment to fostering CSR in the private sector at EU level, the changing expectations of customers — that is shippers — with regard to social and environmental standards of their contractors and suppliers, and the improving situation with regards to guidance and tools for adopting CSR and identifying and implementing the relevant measures (e.g. ISO 26000 and the European Commission's communication on CSR). The authors take the position that in an industry, which is as strongly consolidated as container liner shipping, the adoption and implementation of effective CSR strategies by a few companies at the top can have a profound impact on the industry as a whole. The Japanese NYK Group's CSR strategy is discussed in more detail to illustrate one of the best — if by no means perfect — examples in the current market. The chapter closes with a sector-specific definition of CSR for the container shipping industry.


The environmental consequences of international trade and transport have gained importance as a result of the current climate debate. Products are increasingly being produced in one part of the world, transported to another country and then redistributed to their final country of consumption. Since more than 80% of world trade tonnage measured in metric tons is carried by seagoing vessels, maritime transport will continue to be a core part of most supply chains while rail and road mainly are used for hinterland transport and to and from ports. This chapter presents a methodology for assessing the environmental impact of maritime transport and transport in general, with a specific focus on greenhouse gas emissions. The first section gives an introduction to why Green Maritime Logistics and Sustainability are important topics, while the second offers a framework for measuring greenhouse gas emissions (GHG) for transport systems. The third section presents a model for measuring seaborne transport and its greenhouse gas emissions, and in the fourth section we compare greenhouse gas emissions from different modes of transportation.


To examine the EU ‘Short Sea Shipping’ (SSS), its ‘motorways of the sea (MoS)’ and green ports, within short sea maritime logistics.

To present past research and report recent developments speculating on future trends.

The dominance of SSS over road is questioned; as road transport has expanded, hubs are expected to become larger and fewer with feeders. Road transport is not certain to follow SSS and its four motorways. This result was responsible for the relocation of industry from West to East and North–East inter-port competition.

The SSS ship size and port are undefined; specific data on these concepts are unavailable.

‘Door-to-door’ services are highly sought after in this sector, but difficult to establish.

The green element introduced here, mainly for ports, will dominate future discussions because of the high importance given to climate change.

This chapter outlines for the first time the development of the policy on EU Eco-ports, the relocation of industry, the West–East port competition, the MoS and the long-term deterioration of SSS logistics which is likely to persist in the future.


This chapter presents a framework which is accessible to port authorities to assess the potential environmental impact of maritime operations. Pursuant on globalisation, increased numbers of ship movements have generated more frequent routine maritime operations in ports but few formal approaches exist for assessing their environmental impact, which potentially could be significant. In a novel framing of environmental assessment a business process modelling technique is deployed in a systems approach which highlights inputs, service processes and outputs. In an initial focus, primary processes at strategic level are defined which affect the environmental assessment of present and future operations and their potential impacts. Later, tactical service processes define the integrity of processes that guarantee service level and quality. Finally, outputs are defined by operational processes. The contribution of applying the systems approach to plan more sustainable maritime operations is assessed in a case study of Falmouth Harbour Commissioners (FHC) which regulates much of Falmouth Harbour and hosts the UK's largest offshore marine bunkering operation. Following EU designation of a North Sea Sulfur Oxide Emissions Control Areas (SECA) Falmouth recently recorded a significant rise in the number of vessels calling, and volume of fuel sold as more passing vessels take onboard low-sulfur fuel. The systems approach which empowers FHC to mitigate potential risks and assess development proposals proactively is easily transferable to other ports.

Concluding Remarks

Pages 285-289
Click here to view access options
Cover of Maritime Logistics
Publication date