To read the full version of this content please select one of the options below:

Multi-objective optimization in wire-EDM process using grey relational analysis method (GRA) and backpropagation neural network–genetic algorithm (BPNN–GA) methods

Bobby Oedy Pramoedyo Soepangkat (Department of Mechanical Engineering, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia)
Rachmadi Norcahyo (Department of Mechanical Engineering, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia)
Pathya Rupajati (Department of Mechanical Engineering, Institut Teknologi Indonesia, Tangerang, Indonesia)
Mohammad Khoirul Effendi (Department of Mechanical Engineering, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia)
Helena Carolina Kis Agustin (Department of Mechanical Engineering, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia)

Multidiscipline Modeling in Materials and Structures

ISSN: 1573-6105

Article publication date: 7 August 2019

Issue publication date: 8 August 2019

Abstract

Purpose

The purpose of this paper is to investigate prediction and optimization of multiple performance characteristics in the wire electrical discharge machining (wire-EDM) process of SKD 61 (AISI H13) tool steel.

Design/methodology/approach

The experimental studies were conducted under varying wire-EDM process parameters, which were arc on time, on time, open voltage, off time and servo voltage. The optimized responses were recast layer thickness (RLT), surface roughness (SR) and surface crack density (SCD). Arc on time was set at two different levels, whereas the other four parameters were set at three different levels. Based on Taguchi method, an L18 mixed-orthogonal array was selected for the experiments. Further, three methods, namely grey relational analysis (GRA), backpropagation neural network (BPNN) and genetic algorithm (GA), were applied separately. GRA was performed to obtain a rough estimation of optimum drilling parameters. The influences of drilling parameters on multiple performance characteristics were determined by using percentage contributions. BPNN architecture was determined to predict the multiple performance characteristics. GA method was then applied to determine the optimum wire-EDM parameters.

Findings

The minimum RLT, SR and SCD could be obtained by setting arc on time, on time, open voltage, off time and servo voltage at 2 ms, 3 ms, 90 volt, 10 ms and 38 volt, respectively. The experimental confirmation results showed that BPNN-based GA optimization method could accurately predict and significantly improve all of the responses.

Originality/value

There were no publications regarding multi-response optimization using a combination of GRA and BPNN-based GA methods during wire-EDM process available.

Keywords

Citation

Soepangkat, B.O.P., Norcahyo, R., Rupajati, P., Effendi, M.K. and Agustin, H.C.K. (2019), "Multi-objective optimization in wire-EDM process using grey relational analysis method (GRA) and backpropagation neural network–genetic algorithm (BPNN–GA) methods", Multidiscipline Modeling in Materials and Structures, Vol. 15 No. 5, pp. 1016-1034. https://doi.org/10.1108/MMMS-06-2018-0112

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited