To read the full version of this content please select one of the options below:

Microfabrication of Si3N4-polyimide membrane for thermo-pneumatic actuator

Norihan Abdul Hamid (Institute MicroEngineering and Nanotechnology, Universiti Kebangsaan Malaysia, Bangi, Malaysia)
J. Yunas (Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia, Bangi, Malaysia)
B. Yeop Majlis (Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia, Bangi, Malaysia)
A.A. Hamzah (Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia, Bangi, Malaysia)
B. Bais (Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia)

Microelectronics International

ISSN: 1356-5362

Article publication date: 5 January 2015

Abstract

Purpose

The purpose of this paper is to discuss the fabrication technology and test of thermo-pneumatic actuator utilizing Si3N4-polyimide thin film membrane. Thin film polyimide membrane capped with Si3N4 thin layer is used as actuator membrane which is able to deform through thermal forces inside an isolated chamber. The fabricated membrane will be suitable for thermo-pneumatic-based membrane actuation for lab-on-chip application.

Design/methodology/approach

The actuator device consisting of a micro-heater, a Si-based micro-chamber and a heat-sensitive square-shaped membrane is fabricated using surface and bulk-micromachining process, with an additional adhesive bonding process. The polyimide membrane is capped with a thin silicon nitride layer that is fabricated by using etch stop technique and spin coating.

Findings

The deformation property of the membrane depend on the volumetric expansion of air particles in the heat chamber as a result of temperature increase generated from the micro-heater inside the chamber. Preliminary testing showed that the fabricated micro-heater has the capability to generate heat in the chamber with a temperature increase of 18.8 °C/min. Analysis on membrane deflection against temperature increase showed that heat-sensitive thin polyimide membrane can perform the deflection up to 65 μm for a temperature increase of 57°C.

Originality/value

The dual layer polyimide capped with Si3N4 was used as the membrane material. The nitride layer allowed the polyimide membrane for working at extreme heat condition. The process technique is simple implementing standard micro-electro-mechanical systems process.

Keywords

Acknowledgements

The authors would like to thank the Ministry of Higher Education for sponsoring this study. This research was supported by Research Grant: UKM-AP-NBT-10-2009 (lab-on-chip for Biomedical Applications) and 03-01-02-SF0841 (Development of integrated EM micropump based on embedded planar microcoil for ultra flow fluid injection of bio-samples).

Citation

Abdul Hamid, N., Yunas, J., Yeop Majlis, B., Hamzah, A.A. and Bais, B. (2015), "Microfabrication of Si3N4-polyimide membrane for thermo-pneumatic actuator", Microelectronics International, Vol. 32 No. 1, pp. 18-24. https://doi.org/10.1108/MI-04-2014-0015

Publisher

:

Emerald Group Publishing Limited

Copyright © 2015, Emerald Group Publishing Limited