Integrated reliability and maintainability analysis of Computerized Numerical Control Turning Center considering the effects of human and organizational factors

Rajkumar Bhimgonda Patil (Department of Mechanical Engineering, Annasaheb Dange College of Engineering and Technology, Ashta, India)

Journal of Quality in Maintenance Engineering

ISSN: 1355-2511

Publication date: 31 January 2019

Abstract

Purpose

Reliability, maintainability and availability of modern complex engineered systems are significantly affected by four basic systems or elements: hardware, software, organizational and human. Computerized Numerical Control Turning Center (CNCTC) is one of the complex machine tools used in manufacturing industries. Several research studies have shown that the reliability and maintainability is greatly influenced by human and organizational factors (HOFs). The purpose of this paper is to identify critical HOFs and their effects on the reliability and maintainability of the CNCTC.

Design/methodology/approach

In this paper, 12 human performance influencing factors (PIFs) and 10 organizational factors (OFs) which affect the reliability and maintainability of the CNCTC are identified and prioritized according to their criticality. The opinions of experts in the fields are used for prioritizing, whereas the field failure and repair data are used for reliability and maintainability modeling.

Findings

Experience, training, and behavior are the three most critical human PIFs, and safety culture, problem solving resources, corrective action program and training program are the four most critical OFs which significantly affect the reliability and maintainability of the CNCTC. The reliability and maintainability analysis reveals that the Weibull is the best-fit distribution for time-between-failure data, whereas log-normal is the best-fit distribution for Time-To-Repair data. The failure rate of the CNCTC is nearly constant. Nearly 66 percent of the total failures and repairs are typically due to the hardware system. The percentage of failures and repairs influenced by HOFs is nearly only 16 percent; however, the failure and repair impact of HOFs is significant. The HOFs can increase the mean-time-to-repair and mean-time-between-failure of the CNCTC by nearly 65 and 33 percent, respectively.

Originality/value

The paper uses the field failure data and expert opinions for the analysis. The critical sub-systems of the CNCTC are identified using the judgment of the experts, and the trend of the results is verified with published results.

Keywords

Citation

Patil, R. (2019), "Integrated reliability and maintainability analysis of Computerized Numerical Control Turning Center considering the effects of human and organizational factors", Journal of Quality in Maintenance Engineering, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/JQME-08-2018-0063

Download as .RIS

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.