To read this content please select one of the options below:

Competitiveness analysis through comparative relation mining: Evidence from restaurants’ online reviews

Hongwei Wang (Department of Management Science and Engineering, School of Economics and Management, Tongji University, Shanghai, China)
Song Gao (School of Economics and Management, Tongji University, Shanghai, China)
Pei Yin (University of Shanghai for Science and Technology, Shanghai, China)
James Nga-Kwok Liu (Hong Kong Polytechnic University, Kowloon, Hong Kong)

Industrial Management & Data Systems

ISSN: 0263-5577

Article publication date: 8 May 2017




Comparative opinions widely exist in online reviews as a common way of expressing consumers’ ideas or preferences toward certain products. Such opinion-rich texts are key proxies for detecting product competitiveness. The purpose of this paper is to set up a model for competitiveness analysis by identifying comparative relations from online reviews for restaurants based on both pattern matching and machine learning.


The authors define the sub-category of comparative sentences according to Chinese linguistics. Classification rules are set up for each type of comparative relations through class sequence rule. To improve the accuracy of classification, a comparative entity dictionary is then introduced for further identifying comparative sentences. Finally, the authors collect reviews for restaurants from to conduct experiments for testing the proposed model.


The experiments show that the proposed method outperforms the baseline methods in terms of precision in identifying comparative sentences. On the basis of such comparison-rich sentences, product features and comparative relations are extracted for sentiment analysis, and sentimental score is assigned to each comparative relation to facilitate competitiveness analysis.

Research limitations/implications

Only the explicit comparative relations are discussed, neglecting the implicit ones. Besides that, the study is grounded in the assumption that all features are homogeneous. In some cases, however, the weights to different aspects are not of the same importance to market.

Practical implications

On the basis of comparative relation mining, product features and comparative opinions are extracted for competitiveness analysis, which is of interest to businesses for finding weakness or strength of products, as well as to consumers for making better purchase decisions.

Social implications

Comparative relation mining could be possibly applied in social media for identifying relations among users or products, and ranking users or products, as well as helping companies target and track competitors to enhance competitiveness.


The authors propose a research framework for restaurant competitiveness analysis by mining comparative relations from online consumer reviews. The results would be able to differentiate one restaurant from another in some aspects of interest to consumers, and reveal the changes in these differences over time.



This work is partially supported by the NSFC Grant 71371144, 71601119 and 71601082.


Wang, H., Gao, S., Yin, P. and Liu, J.N.-K. (2017), "Competitiveness analysis through comparative relation mining: Evidence from restaurants’ online reviews", Industrial Management & Data Systems, Vol. 117 No. 4, pp. 672-687.



Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

Related articles