Fuzzy fault tree analysis for controlling robot-related accidents involving humans in industrial plants: a case study
International Journal of Quality & Reliability Management
ISSN: 0265-671X
Article publication date: 11 November 2020
Issue publication date: 12 May 2021
Abstract
Purpose
In recent years, the application of robots in different industrial sectors such as nuclear power generation, construction, automobile, firefighting and medicine, etc. is increasing day by day. In large industrial plants generally humans and robots work together to accomplish several tasks and lead to the problem of safety and reliability because any malfunction event of robots may cause human injury or even death. To access the reliability of a robot, sufficient amount of failure data is required which is sometimes very difficult to collect due to rare events of any robot failures. Also, different types of their failure pattern increase the difficulty which finally leads to the problem of uncertainty. To overcome these difficulties, this paper presents a case study by assessing fuzzy fault tree analysis (FFTA) to control robot-related accidents to provide safe working environment to human beings in any industrial plant.
Design/methodology/approach
Presented FFTA method uses different fuzzy membership functions to quantify different uncertainty factors and applies alpha-cut coupled weakest t-norm (
Findings
The result obtained from presented FFTA method is compared with other listing approaches. Critical basic events are also ranked using V-index for making suitable action plan to control robot-related accidents. Study indicates that the presented FFTA is a good alternative method to analyze fault in robot-human interaction for providing safe working environment in an industrial plant.
Originality/value
Existing fuzzy reliability assessment techniques designed for robots mainly use triangular fuzzy numbers (TFNs), triangle vague sets (TVS) or triangle intuitionistic fuzzy sets (IFS) to quantify data uncertainty. Present study overcomes this shortcoming and generalizes the idea of fuzzy reliability assessment for robots by adopting different IFS to control robot-related accidents to provide safe working environment to human. This is the main contribution of the paper.
Keywords
Acknowledgements
The author would like to thank the anonymous referees for their useful suggestions, which helped in improving the manuscript.
Citation
Komal (2021), "Fuzzy fault tree analysis for controlling robot-related accidents involving humans in industrial plants: a case study", International Journal of Quality & Reliability Management, Vol. 38 No. 6, pp. 1342-1365. https://doi.org/10.1108/IJQRM-03-2020-0069
Publisher
:Emerald Publishing Limited
Copyright © 2020, Emerald Publishing Limited