To read this content please select one of the options below:

Computational analysis of nanofluid and hybrid nanofluid in Darcy’s squeezing flow with entropy optimization

Muhammad Ijaz Khan (Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan)
Ahmed Alsaedi (King Abdulaziz University, Jeddah, Saudi Arabia)
Salman Ahmad (Quaid-i-Azam University, Islamabad, Pakistan)
Tasawar Hayat (Quaid-i-Azam University, Islamabad, Pakistan)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 27 August 2019

Issue publication date: 11 September 2019

81

Abstract

Purpose

This paper aims to examine squeezing flow of hybrid nanofluid inside the two parallel rotating sheets. The upper sheet squeezes downward, whereas the lower sheet stretches. Darcy’s relation describes porous space. Hybrid nanofluid consists of copper (Cu) and titanium oxide (TiO2) nanoparticles and water (H2O). Viscous dissipation and thermal radiation in modeling are entertained. Entropy generation analysis is examined.

Design/methodology/approach

Transformation procedure is implemented for conversion of partial differential systems into an ordinary one. The shooting scheme computes numerical solution.

Findings

Velocity, temperature, Bejan number, entropy generation rate, skin friction and Nusselt number are discussed. Key results are mentioned. Velocity field increases vs higher estimations of squeezing parameter, while it declines via larger porosity variable. Temperature of liquid particles enhances vs larger Eckert number. It is also examined that temperature field dominates for TiO2-H2O, Cu-H2O and Cu-TiO2-H2O. Magnitude of heat transfer rate and skin friction coefficient increase against higher squeezing parameter, radiative parameter, porosity variable and suction parameter.

Originality/value

The originality of this paper is investigation of three-dimensional time-dependent squeezing flow of hybrid nanomaterial between two parallel sheets. To the best of the authors’ knowledge, no such consideration has been carried out in the literature.

Keywords

Citation

Khan, M.I., Alsaedi, A., Ahmad, S. and Hayat, T. (2019), "Computational analysis of nanofluid and hybrid nanofluid in Darcy’s squeezing flow with entropy optimization", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 29 No. 9, pp. 3394-3416. https://doi.org/10.1108/HFF-02-2019-0133

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited

Related articles