To read the full version of this content please select one of the options below:

Numerical Simulation of PCM melting over a wavy surface

Tarik Kousksou (Laboratoire des Sciences Appliquées à la Mécanique et au Génie Electrique (SIAME), Université de Pau et des Pays de l’Adour, Pau, France)
Mustapha Mahdaoui (Laboratoire des Sciences Appliquées à la Mécanique et au Génie Electrique (SIAME), Université de Pau et des Pays de l’Adour, Pau, France)
Arid Ahmed (Laboratoire des Sciences Appliquées à la Mécanique et au Génie Electrique (SIAME), Université de Pau et des Pays de l’Adour, Pau, France)
Jean Batina (Génie Thermique et Energie, Université de Pau et des Pays de l’Adour, Pau, France)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 28 October 2014

Downloads
269

Abstract

Purpose

The purpose of this paper is to conduct a numerical study to analyze the melting process along a vertical wavy surface with uniform surface temperature.

Design/methodology/approach

The cavity horizontal walls are insulated while the left hot wavy wall and the right cold wall are maintained at temperatures, TH=38.3°C and TC=28.3°C, respectively. The enclosure was filled by solid Gallium initially at temperature TC. A numerical code is developed using an unstructured finite-volume method and an enthalpy porosity technique to solve for natural convection coupled to solid-liquid phase change. The validity of the numerical code used is ascertained by comparing the results with previously published results.

Findings

The effect of number of wavy surface undulation and amplitude of the wavy surface on the flow structure and heat transfer characteristics is investigated in detail. The numerical results show that the enhanced total heat transfer rate seems to depend on the amplitude of the wavy surface.

Originality/value

Flow and heat transfer from irregular surfaces are often encountered in many engineering applications to enhance heat transfer such as micro-electronic devices, flat plate solar collectors and flat-plate condensers in refrigerators, etc. Roughened surfaces could be used in latent storage systems where the wall heat flux is known. One of the reasons why a roughened surface is more efficient in heat transfer is its capability to promote fluid motion near the surface; in this way a complex wavy surface is expected to promote a larger heat transfer rate than a flat plate. This complex geometry will promote a correspondingly complicated motion in the fluid near the surface; this motion is described by the nonlinear boundary-layer equations.

Keywords

Citation

Kousksou, T., Mahdaoui, M., Ahmed, A. and Batina, J. (2014), "Numerical Simulation of PCM melting over a wavy surface", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 24 No. 8, pp. 1660-1669. https://doi.org/10.1108/HFF-01-2013-0031

Publisher

:

Emerald Group Publishing Limited

Copyright © 2014, Emerald Group Publishing Limited