M2R-Net: deep network for arbitrary oriented vehicle detection in MiniSAR images
ISSN: 0264-4401
Article publication date: 24 March 2021
Issue publication date: 28 July 2021
Abstract
Purpose
The purpose of this paper is to use the most popular deep learning algorithm to complete the vehicle detection in the urban area of MiniSAR image, and provide reliable means for ground monitoring.
Design/methodology/approach
An accurate detector called the rotation region-based convolution neural networks (CNN) with multilayer fusion and multidimensional attention (M2R-Net) is proposed in this paper. Specifically, M2R-Net adopts the multilayer feature fusion strategy to extract feature maps with more extensive information. Next, the authors implement the multidimensional attention network to highlight target areas. Furthermore, a novel balanced sampling strategy for hard and easy positive-negative samples and a global balanced loss function are applied to deal with spatial imbalance and objective imbalance. Finally, rotation anchors are used to predict and calibrate the minimum circumscribed rectangle of vehicles.
Findings
By analyzing many groups of experiments, the validity and universality of the proposed model are verified. More importantly, comparisons with SSD, LRTDet, RFCN, DFPN, CMF-RCNN, R3Det, SCRDet demonstrate that M2R-Net has state-of-the-art detection performance.
Research limitations/implications
The progress in the field of MiniSAR application has been slow due to strong speckle noise, phase error, complex environments and a low signal-to-noise ratio. In addition, four kinds of imbalances, i.e. spatial imbalance, scale imbalance, class imbalance and objective imbalance, in object detection based on the CNN greatly inhibit the optimization of detection performance.
Originality/value
This research can not only enrich the means of daily traffic monitoring but also be used for enemy intelligence reconnaissance in wartime.
Keywords
Citation
Han, Z., Wang, C. and Fu, Q. (2021), "M2R-Net: deep network for arbitrary oriented vehicle detection in MiniSAR images", Engineering Computations, Vol. 38 No. 7, pp. 2969-2995. https://doi.org/10.1108/EC-08-2020-0428
Publisher
:Emerald Publishing Limited
Copyright © 2020, Emerald Publishing Limited