Search results

1 – 10 of over 6000
Article
Publication date: 30 October 2018

Qizi Huangpeng, Wenwei Huang, Hanyi Shi and Jun Fan

Vehicles estimation can be used in evaluating traffic conditions and facilitating traffic control, which is an important task in intelligent transportation system. The paper aims…

Abstract

Purpose

Vehicles estimation can be used in evaluating traffic conditions and facilitating traffic control, which is an important task in intelligent transportation system. The paper aims to propose a vehicle-counting method based on the analysis of surveillance videos.

Design/methodology/approach

The paper proposes a novel two-step method using low-rank representation (LRR) detection and locality-constrained linear coding (LLC) classification to count the number of vehicles in traffic video sequences automatically. The proposed method is based on an offline training to understand an LLC-based classifier with extracted features for vehicle and pedestrian classification, followed by an online counting algorithm to count the number of vehicles detected from the image sequence.

Findings

The proposed method allows delivery estimation (counting the number of vehicles at each frame only) and total number estimation of vehicles shown in the scene. The paper compares the proposed method with other similar methods on three public data sets. The experimental results show that the proposed method is competitive and effective in terms of computational speed and evaluation accuracy.

Research limitations/implications

The proposed method does not consider illumination. Hence, the results might be unsatisfactory under low-lighting condition. Therefore, researchers are encouraged to add a term that controls the illumination changes into the energy function of vehicle detection in future work.

Originality/value

The paper bridges the gap between LRR detection and vehicle counting by taking advantage of existing LLC classification algorithm to distinguish different moving objects.

Details

Engineering Computations, vol. 35 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 July 2019

Sana Bougharriou, Fayçal Hamdaoui and Abdellatif Mtibaa

This paper aims to study distance determination in vehicles, which could allow an in-car system to provide feedback and alert drivers, by either prompting the driver to take…

Abstract

Purpose

This paper aims to study distance determination in vehicles, which could allow an in-car system to provide feedback and alert drivers, by either prompting the driver to take preventative action or prepare the vehicle’s safety systems for an imminent collision. The success of a new system's deploying allows drivers to oppose the huge number of accidents and the material losses and costs associated with car accidents.

Design/methodology/approach

In this context, this paper presents estimation distance between camera and frontal vehicles based on camera calibration by combining three main steps: vanishing point extraction, lanes detection and vehicles detection in the field of 3 D real scene. This algorithm was implemented in MATLAB, and it was applied on scenes containing several vehicles in highway urban area. The method starts with the camera calibration. Then, the distance information can be calculated.

Findings

Based on experiment performance, this new method achieves robustness especially for detecting and estimating distances for multiple vehicles in a single scene. Also, this method demonstrates a higher accuracy detection rate of 0.869 in an execution time of 2.382 ms.

Originality/value

The novelty of the proposed method consists firstly on the use of an adaptive segmentation to reject the false points of interests. Secondly, the use of vanishing point has reduced the cost of using memory. Indeed, the part of the image above the vanishing point will not be processed and therefore will be deleted. The last benefit is the application of this new method on structured roads.

Details

Engineering Computations, vol. 36 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 November 2016

Anan Banharnsakun and Supannee Tanathong

Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking. Especially in a traffic video monitoring system…

Abstract

Purpose

Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking. Especially in a traffic video monitoring system, vehicle detection is an essential and challenging task. In the previous studies, many vehicle detection methods have been presented. These proposed approaches mostly used either motion information or characteristic information to detect vehicles. Although these methods are effective in detecting vehicles, their detection accuracy still needs to be improved. Moreover, the headlights and windshields, which are used as the vehicle features for detection in these methods, are easily obscured in some traffic conditions. The paper aims to discuss these issues.

Design/methodology/approach

First, each frame will be captured from a video sequence and then the background subtraction is performed by using the Mixture-of-Gaussians background model. Next, the Shi-Tomasi corner detection method is employed to extract the feature points from objects of interest in each foreground scene and the hierarchical clustering approach is then applied to cluster and form them into feature blocks. These feature blocks will be used to track the moving objects frame by frame.

Findings

Using the proposed method, it is possible to detect the vehicles in both day-time and night-time scenarios with a 95 percent accuracy rate and can cope with irrelevant movement (waving trees), which has to be deemed as background. In addition, the proposed method is able to deal with different vehicle shapes such as cars, vans, and motorcycles.

Originality/value

This paper presents a hierarchical clustering of features approach for multiple vehicles tracking in traffic environments to improve the capability of detection and tracking in case that the vehicle features are obscured in some traffic conditions.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 9 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 March 2021

Zishuo Han, Chunping Wang and Qiang Fu

The purpose of this paper is to use the most popular deep learning algorithm to complete the vehicle detection in the urban area of MiniSAR image, and provide reliable means for…

Abstract

Purpose

The purpose of this paper is to use the most popular deep learning algorithm to complete the vehicle detection in the urban area of MiniSAR image, and provide reliable means for ground monitoring.

Design/methodology/approach

An accurate detector called the rotation region-based convolution neural networks (CNN) with multilayer fusion and multidimensional attention (M2R-Net) is proposed in this paper. Specifically, M2R-Net adopts the multilayer feature fusion strategy to extract feature maps with more extensive information. Next, the authors implement the multidimensional attention network to highlight target areas. Furthermore, a novel balanced sampling strategy for hard and easy positive-negative samples and a global balanced loss function are applied to deal with spatial imbalance and objective imbalance. Finally, rotation anchors are used to predict and calibrate the minimum circumscribed rectangle of vehicles.

Findings

By analyzing many groups of experiments, the validity and universality of the proposed model are verified. More importantly, comparisons with SSD, LRTDet, RFCN, DFPN, CMF-RCNN, R3Det, SCRDet demonstrate that M2R-Net has state-of-the-art detection performance.

Research limitations/implications

The progress in the field of MiniSAR application has been slow due to strong speckle noise, phase error, complex environments and a low signal-to-noise ratio. In addition, four kinds of imbalances, i.e. spatial imbalance, scale imbalance, class imbalance and objective imbalance, in object detection based on the CNN greatly inhibit the optimization of detection performance.

Originality/value

This research can not only enrich the means of daily traffic monitoring but also be used for enemy intelligence reconnaissance in wartime.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 June 2019

Xinyu Zhang, Mo Zhou, Peng Qiu, Yi Huang and Jun Li

The purpose of this paper is the presentation and research of a novel sensor fusion-based system for obstacle detection and identification, which uses the millimeter-wave radar to…

Abstract

Purpose

The purpose of this paper is the presentation and research of a novel sensor fusion-based system for obstacle detection and identification, which uses the millimeter-wave radar to detect the position and velocity of the obstacle. Afterwards, the image processing module uses the bounding box regression algorithm in deep learning to precisely locate and identify the obstacles.

Design/methodology/approach

Unlike the traditional algorithms that use radar and vision to detect obstacles separately, the purposed method of this paper uses radar to determine the approximate location of obstacles and then uses bounding box regression to achieve accurate positioning and recognition. First, the information of the obstacles can be acquired by the millimeter-wave radar, and the effective target is extracted by filtering the data. Then, use coordinate system conversion and camera parameter calibration to project the effective target to the image plane, and generate the region of interest (ROI). Finally, based on image processing and machine learning techniques, the vehicle targets in the ROI are detected and tracked.

Findings

The millimeter wave is used to determine the presence of an obstacle, and the deep learning algorithm of the image is combined to determine the shape and the class of the obstacle. The experimental results indicate that the detection rate of this method is up to 91.6 per cent, which can better implement the perception of the environment in front of the vehicle.

Originality/value

The originality is based on the combination of millimeter-wave sensors and deep learning. Using the bounding box regression algorithm in RCNN, the ROI detected by radar is analyzed to realize real-time obstacle detection and recognition. This method does not require processing the entire image, greatly reducing the amount of data processing and improving the efficiency of the algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 October 2019

Akarsh Aggarwal, Anuj Rani and Manoj Kumar

The purpose of this paper is to explore the challenges faced by the automatic recognition systems over the conventional systems by implementing a novel approach for detecting and…

Abstract

Purpose

The purpose of this paper is to explore the challenges faced by the automatic recognition systems over the conventional systems by implementing a novel approach for detecting and recognizing the vehicle license plates in order to increase the security of the vehicles. This will also increase the societal discipline among vehicle users.

Design/methodology/approach

From a methodological point of view, the proposed system works in three phases which includes the pre-processing of the input image from the database, applying segmentation to the processed image, and finally extracting and recognizing the image of the license plate.

Findings

The proposed paper provides an analysis that demonstrates the correctness of the algorithm to correctly capture the license plate using performance metrics such as detection rate and false positive rate. The obtained results demonstrate that the proposed algorithm detects vehicle license plates and provides detection rate of 93.34 percent with false positive rate of 6.65 percent.

Research limitations/implications

The proposed license plate detection system eliminates the need of manually used systems for managing the traffic by installing the toll-booths on freeways and bridges. The design implemented in this paper attempts to capture the license plate by using three phase detection process that helps to increase the level of security and contribute in making a sustainable city.

Originality/value

This paper presents a distinctive approach to detect the license plate of the vehicles using the various image processing techniques such as dilation, grey-scale conversion, edge processing, etc. and finding the region of interest of the segmented image to capture the license plate of the vehicles.

Details

Smart and Sustainable Built Environment, vol. 9 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 4 November 2014

Bailing Zhang and Hao Pan

Many applications in intelligent transportation demand accurate categorization of vehicles. The purpose of this paper is to propose a working image-based vehicle classification…

Abstract

Purpose

Many applications in intelligent transportation demand accurate categorization of vehicles. The purpose of this paper is to propose a working image-based vehicle classification system. The first component vehicle detection is implemented by applying Dalal and Triggs's histograms of oriented gradients features and linear support vector machine (SVM) classifier. The second component vehicle classification, which is the emphasis of this paper, is accomplished by an improved stacked generalization. As an effective ensemble learning strategy, stacked generalization has been proposed to combine multiple models using the concept of a meta-learner. However, it was found that the well-known meta-learning scheme multi-response linear regression (MLR) for stacked generalization performs poorly on the vehicle classification.

Design/methodology/approach

A new meta-learner is then proposed based on kernel principal component regression (KPCR). The stacked generalization scheme consists of a heterogeneous classifier ensemble with seven base classifiers, i.e. linear discriminant classifier, fuzzy k-nearest neighbor, logistic regression, Parzen classifier, Gaussian mixture model, multiple layer perceptron and SVM.

Findings

Experimental results using more than 2,500 images from four types of vehicles (bus, light truck, car and van) demonstrated the effectiveness of the proposed approach. The improved stacked generalization produced consistently better results when compared to any of the single base classifier used and four other beta learning algorithms, including MLR, majority voting, logistic regression and decision template.

Originality/value

With the seven base classifiers, the KPCR-based stacking offers a performance of 96 percent accuracy and 95 percent κ coefficient, thus exhibiting promising potentials for real-world applications.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 29 January 2020

Dianchen Zhu, Huiying Wen and Yichuan Deng

To improve insufficient management by artificial management, especially for traffic accidents that occur at crossroads, the purpose of this paper is to develop a pro-active…

374

Abstract

Purpose

To improve insufficient management by artificial management, especially for traffic accidents that occur at crossroads, the purpose of this paper is to develop a pro-active warning system for crossroads at construction sites. Although prior studies have made efforts to develop warning systems for construction sites, most of them paid attention to the construction process, while the accidents that occur at crossroads were probably overlooked.

Design/methodology/approach

By summarizing the main reasons resulting for those accidents occurring at crossroads, a pro-active warning system that could provide six functions for countermeasures was designed. Several approaches relating to computer vision and a prediction algorithm were applied and proposed to realize the setting functions.

Findings

One 12-hour video that films a crossroad at a construction site was selected as the original data. The test results show that all designed functions could operate normally, several predicted dangerous situations could be detected and corresponding proper warnings could be given. To validate the applicability of this system, another 36-hour video data were chosen for a performance test, and the findings indicate that all applied algorithms show a significant fitness of the data.

Originality/value

Computer vision algorithms have been widely used in previous studies to address video data or monitoring information; however, few of them have demonstrated the high applicability of identification and classification of the different participants at construction sites. In addition, none of these studies attempted to use a dynamic prediction algorithm to predict risky events, which could provide significant information for relevant active warnings.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 January 2023

Faisal Lone, Harsh Kumar Verma and Krishna Pal Sharma

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable…

Abstract

Purpose

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable networks. Vehicle-to-everything (V2X) communication has brought the long-anticipated goal of safe, convenient and sustainable transportation closer to reality. The connected vehicle (CV) paradigm is critical to the intelligent transportation systems vision. It imagines a society free of a troublesome transportation system burdened by gridlock, fatal accidents and a polluted environment. The authors cannot overstate the importance of CVs in solving long-standing mobility issues and making travel safer and more convenient. It is high time to explore vehicular networks in detail to suggest solutions to the challenges encountered by these highly dynamic networks.

Design/methodology/approach

This paper compiles research on various V2X topics, from a comprehensive overview of V2X networks to their unique characteristics and challenges. In doing so, the authors identify multiple issues encountered by V2X communication networks due to their open communication nature and high mobility, especially from a security perspective. Thus, this paper proposes a trust-based model to secure vehicular networks. The proposed approach uses the communicating nodes’ behavior to establish trustworthy relationships. The proposed model only allows trusted nodes to communicate among themselves while isolating malicious nodes to achieve secure communication.

Findings

Despite the benefits offered by V2X networks, they have associated challenges. As the number of CVs on the roads increase, so does the attack surface. Connected cars provide numerous safety-critical applications that, if compromised, can result in fatal consequences. While cryptographic mechanisms effectively prevent external attacks, various studies propose trust-based models to complement cryptographic solutions for dealing with internal attacks. While numerous trust-based models have been proposed, there is room for improvement in malicious node detection and complexity. Optimizing the number of nodes considered in trust calculation can reduce the complexity of state-of-the-art solutions. The theoretical analysis of the proposed model exhibits an improvement in trust calculation, better malicious node detection and fewer computations.

Originality/value

The proposed model is the first to add another dimension to trust calculation by incorporating opinions about recommender nodes. The added dimension improves the trust calculation resulting in better performance in thwarting attacks and enhancing security while also reducing the trust calculation complexity.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Abstract

Details

Transport Science and Technology
Type: Book
ISBN: 978-0-08-044707-0

1 – 10 of over 6000