To read the full version of this content please select one of the options below:

Sulfide stress cracking assessment of low-alloy L80 casing steel in H2S environment

Weishan Huang (Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada)
Jing-Li Luo (Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada)
Hani Henein (Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada)
Josiah Jordan (Evraz Inc. NA, Regina, Canada)

Anti-Corrosion Methods and Materials

ISSN: 0003-5599

Article publication date: 1 July 2019

Abstract

Purpose

This paper aims to evaluate the sulfide stress cracking (SSC) resistance of L80 casing steels with different alloying chemistries (e.g. Ti-B and Mn-Cr-Mo) by correlating the reduction in area ratio with the mechanical property, inclusion and carbide.

Design/methodology/approach

SSC tests were conducted in 5.0 Wt.% sodium chloride and 0.5 Wt.% acetic acid solution saturated with H2S using constant load tensile method. The microstructure and fracture morphology of the steel were observed using scanning electron microscope. The inclusion and carbide were identified by energy dispersive spectroscopy and auger electron microscope.

Findings

Among all the testing steels, electric resistance welding (ERW) L80-0.5Mo steel demonstrates the highest SSC resistance because of its appropriate mechanical properties, uniform microstructure and low inclusion content. The SSC resistance of L80 steels generally decreases with the rising yield strength. The fracture mode of steel with low SSC resistance is jointly dominated by transgranular and intergranular cracking, whereas that with high SSC resistance is mainly transgranular cracking. SSC is more sensitive to inclusions than carbides because the cracks are easier to be initiated from the elongated inclusions and oversized oxide inclusions, especially the inclusion clusters. Unlike the elongated carbide, globular carbide in the steel can reduce the negative effect on the SSC resistance. Especially, a uniform microstructure with fine globular carbides favors a significant improvement in SSC resistance through precluding the cracking propagation.

Originality/value

The paper provides the new insights into the improvement in SSC resistance of L80 casing steel for its application in H2S environment through optimizing its alloying compositions and microstructure.

Keywords

Acknowledgements

This work is supported by Natural Sciences and Engineering Research Council of Canada and EVRAZ Inc. NA.

Citation

Huang, W., Luo, J.-L., Henein, H. and Jordan, J. (2019), "Sulfide stress cracking assessment of low-alloy L80 casing steel in H2S environment", Anti-Corrosion Methods and Materials, Vol. 66 No. 4, pp. 379-387. https://doi.org/10.1108/ACMM-08-2018-1984

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Emerald Publishing Limited