To read this content please select one of the options below:

Effect of outlet positions and various turbulence models on mixing in a single and multi strand tundish

Pradeep K. Jha (Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India)
Sukanta K. Dash (Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 1 August 2002

502

Abstract

The Navier‐Stokes equation and the species continuity equation have been solved numerically in a boundary fitted coordinate system comprising the geometry of a large scale industrial size tundish. The solution of the species continuity equation predicts the time evolution of the concentration of a tracer at the outlet of a single strand bare tundish. The numerical prediction of the tracer concentration has been made with three different turbulence models; (a standard kε, a kε RNG and a Low Re number Lam‐Bremhorst model) which favorably compares with that of the experimental observation for a single strand bare tundish. It has been found that the overall comparison of kε model with that of the experiment is better than the other two turbulence models as far as gross quantities like mean residence time and ratio of mixed to dead volume are concerned. However, it has been found that the initial transient development of the tracer concentration is best predicted by the Lam‐Bremhorst model and then by the RNG model. The kε model predicts the tracer concentration much better than the other two models after the initial transience (t>40 per cent of mean residence time) and the RNG model lies in between the kε and the Lam‐Bremhorst one. The numerical study has been extended to a multi strand tundish (having 6 outlets) where the effect of outlet positions on the ratio of mix to dead volume has been studied with the help of the above three turbulence models. It has been found that all the three turbulence models show a peak value for the ratio of mix to dead volume (a mixing parameter) when the outlets are placed 200 mm away from the wall (position‐2) thus signifying an optimum location for the outlets to get highest mixing in a given multi strand tundish.

Keywords

Citation

Jha, P.K. and Dash, S.K. (2002), "Effect of outlet positions and various turbulence models on mixing in a single and multi strand tundish", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 12 No. 5, pp. 560-584. https://doi.org/10.1108/09615530210434296

Publisher

:

MCB UP Ltd

Copyright © 2002, MCB UP Limited

Related articles