A Robust Multivariate Statistical Procedure for Evaluation and Selection of Industrial Robots
International Journal of Operations & Production Management
ISSN: 0144-3577
Article publication date: 1 February 1992
Abstract
Industrial robots are increasingly used by many manufacturing firms. The number of robot manufacturers has also increased, with many of these firms now offering a wide range of robots. A potential user is thus faced with many options in both performance and cost. Proposes a decision model for the robot selection problem using both a robustified Mahalanobis distance analysis, i.e. a multivariate distance measure, and principal‐components analysis. Unlike most other models for robot selection, this model takes into consideration the fact that a robot′s performance, as specified by the manufacturer, is often unobtainable in reality. The robots selected by the proposed model become candidates for factory testing to verify manufacturers′ specifications. Tests the proposed model on a real data set and presents an example.
Keywords
Citation
Booth, D.E., Khouja, M. and Hu, M. (1992), "A Robust Multivariate Statistical Procedure for Evaluation and Selection of Industrial Robots", International Journal of Operations & Production Management, Vol. 12 No. 2, pp. 15-24. https://doi.org/10.1108/01443579210009023
Publisher
:MCB UP Ltd
Copyright © 1992, MCB UP Limited