Some new fractional integral inequalities for generalized relative semi-m-(r; h1, h2)-preinvex mappings via generalized Mittag-Leffler function

Artion Kashuri (Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, Vlora, Albania)
Rozana Liko (Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, Vlora, Albania)

Arab Journal of Mathematical Sciences

ISSN: 1319-5166

Article publication date: 2 January 2019

Issue publication date: 31 August 2020

318

Abstract

The authors discover a new identity concerning differentiable mappings defined on m-invex set via fractional integrals. By using the obtained identity as an auxiliary result, some fractional integral inequalities for generalized relative semi- m-(r;h1,h2)-preinvex mappings by involving generalized Mittag-Leffler function are presented. It is pointed out that some new special cases can be deduced from main results of the paper. Also these inequalities have some connections with known integral inequalities. At the end, some applications to special means for different positive real numbers are provided as well.

Keywords

Citation

Kashuri, A. and Liko, R. (2020), "Some new fractional integral inequalities for generalized relative semi-m-(r; h1, h2)-preinvex mappings via generalized Mittag-Leffler function", Arab Journal of Mathematical Sciences, Vol. 26 No. 1/2, pp. 41-55. https://doi.org/10.1016/j.ajmsc.2018.12.003

Publisher

:

Emerald Publishing Limited

Copyright © 2019, Artion Kashuri and Rozana Liko

License

Published in the Arab Journal of Mathematical Sciences. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at http://creativecommons.org/licences/by/4.0/legalcode


1. Introduction

The following double inequality is known as Hermite–Hadamard inequality.

Theorem 1.1.

Let f:I be a convex mapping on an interval I of real numbers and a,bI with a<b. Then the subsequent double inequality holds:

(1.1)f(a+b2)1baabf(x)dxf(a)+f(b)2.

For recent results concerning Hermite–Hadamard type inequalities through various classes of convex functions the readers are referred to [3–5,7,8,12–,20,21,23–25,29,32] and the references mentioned in these papers.

Let us recall some special functions and evoke some basic definitions as follows.

Definition 1.2

([20]). Let fL[a,b]. The Riemann–Liouville integrals Ja+αf and Jbαf of order α>0 with a0 are defined by

Ja+αf(x)=1Γ(α)ax(xt)α1f(t)dt,x>a

and

Jbαf(x)=1Γ(α)xb(tx)α1f(t)dt,b>x,
where Γ(α)=0+euuα1du. Here Ja+0f(x)=Jb0f(x)=f(x).

Note that α=1, the fractional integral reduces to the classical integral.

Definition 1.3

([27]). Let μ,ν,k,l,γ be positive real numbers and ω. Then the generalized fractional integral operators containing Mittag-Leffler function ϵμ,ν,l,ω,a+γ,δ,k and ϵμ,ν,l,ω,bγ,δ,k for a real valued continuous function f are defined by:

(1.2)(ϵμ,ν,l,ω,a+γ,δ,kf)(x)=ax(xt)v1Eμ,ν,lγ,δ,k(ω(xt)μ)f(t)dt

and

(ϵμ,ν,l,ω,bγ,δ,kf)(x)=xb(tx)v1Eμ,ν,lγ,δ,k(ω(tx)μ)f(t)dt,
where the function Eμ,ν,lγ,δ,k is the generalized Mittag-Leffler function defined as
(1.3)Eμ,ν,lγ,δ,k(t)=0(γ)kntnΓ(μn+ν)(δ)ln

and (a)n is the Pochhammer symbol, it defined as

(a)n=a(a+1)(a+2)(a+n1),(a)0=1.

For ω=0 in (1.2), integral operator ϵμ,ν,l,ω,a+γ,δ,k reduces to the Riemann–Liouville fractional integral operator.

In [27,30] properties of generalized integral operator and generalized Mittag-Leffler functions are studied in detail. In [27] it is proved that Eμ,ν,lγ,δ,k(t) is absolutely convergent for k<l+μ. Let S be the sum of series of absolute terms of Eμ,ν,lγ,δ,k(t). We will use this property of Mittag-Leffler function in sequel.

Definition 1.4

([1]). A set Kn is said to be invex with respect to the mapping Λ:K×Kn, if x+tΛ(y,x)K for every x,yK and t[0,1].

Definition 1.5

([7]). A non-negative function f:I[0,+) is said to be P-function, if

f(tx+(1t)y)f(x)+f(y),x,yI,t[0,1].

Definition 1.6

([22]). Let h:[0,1] be a non-negative function and h0. The function f on the invex set K is said to be h-preinvex with respect to Λ, if

(1.4)f(x+tΛ(y,x))h(1t)f(x)+h(t)f(y)

for each x,yK and t[0,1] where f()>0.

Definition 1.7

([31]). Let f:K be a non-negative function. A function f:K is said to be a tgs-convex on K if the inequality

(1.5)f((1t)x+ty)t(1t)[f(x)+f(y)]

holds for all x,yK and t(0,1).

Definition 1.8

([19]). A function f:I is said to be MT-convex, if it is non-negative and x,yI and t(0,1) satisfies the subsequent inequality:

(1.6)f(tx+(1t)y)t21tf(x)+1t2tf(y).
Definition 1.9

([25]). A function: f:I is said to be m-MT-convex, if f is positive and for x,yI, and t(0,1), among m(0,1], satisfies the following inequality

(1.7)f(tx+m(1t)y)t21tf(x)+m1t2tf(y).
Definition 1.10

([8]). A set Kn is named as m-invex with respect to the mapping Λ:K×Kn for some fixed m(0,1], if mx+tΛ(y,mx)K holds for each x,yK and any t[0,1].

Remark 1.11.

In Definition 1.10, under certain conditions, the mapping Λ(y,mx) could be reduced to Λ(y,x). For example when m=1, then the m-invex set degenerates an invex set on K.

Definition 1.12

([26]). Let K be an open m-invex set with respect to the mapping Λ:K×K and h1,h2:[0,1][0,+). A function f:K is said to be generalized (m,h1,h2)-preinvex, if

(1.8)f(mx+tΛ(y,mx))mh1(t)f(x)+h2(t)f(y)

is valid for all x,yK and t[0,1], for some fixed m(0,1].

Motivated by the above literatures, the main objective of this paper is to establish in Section 2, some new fractional integral inequalities for generalized relative semi-m-(r;h1,h2)-preinvex mappings by involving generalized Mittag-Leffler function. It is pointed out that some new special cases will be deduced from main results of the paper. Also we will see that these inequalities have some connections with known integral inequalities. In Section 3, some applications to special means for different positive real numbers will be given.

2. Main results

The following definitions will be used in this section.

Definition 2.1.

Let m:[0,1](0,1] be a function. A set Kn is named as m-invex with respect to the mapping Λ:K×Kn, if m(t)x+ξΛ(y,m(t)x)K holds for each x,yK and any t,ξ[0,1].

Remark 2.2.

In Definition 2.1, under certain conditions, the mapping Λ(y,m(t)x) for any t,ξ[0,1] could be reduced to Λ(y,mx). For example when m(t)=m for all t[0,1], then the m-invex set degenerates to an m-invex set on K.

We next introduce the notion of generalized relative semi-m-(r;h1,h2)-preinvex mappings.

Definition 2.3.

Let K be an open m-invex set with respect to the mapping Λ:K×K. Suppose h1,h2:[0,1][0,+),ψ:IK are continuous functions and m:[0,1](0,1]. A mapping f:K(0,+) is said to be generalized relative semi-m-(r;h1,h2)-preinvex, if

(2.1)f(m(t)ψ(x)+ξΛ(ψ(y),m(t)ψ(x)))[m(ξ)h1(ξ)fr(x)+h2(ξ)fr(y)]1r

holds for all x,yI and t,ξ[0,1], where r0.

Remark 2.4.

In Definition 2.3, if we choose m=m=r=1, this definition reduces to the definition considered by Noor in [23] and Preda et al. in [11].

Remark 2.5.

In Definition 2.3, if we choose m=m=r=1 and ψ(x)=x, then we get Definition 1.12.

Remark 2.6.

Let us discuss some special cases in Definition 2.3 as follows.

  1. Taking h1(t)=h2(t)=1, then we get the generalized relative semi-(m,P)-preinvex mappings.

  2. Taking h1(t)=(1t)s and h2(t)=ts for s(0,1], then we get the generalized relative semi-(m,s)-Breckner-preinvex mappings.

  3. Taking h1(t)=(1t)s and h2(t)=ts for s(0,1], then we get the generalized relative semi-(m,s)-Godunova–Levin–Dragomir-preinvex mappings.

  4. Taking h1(t)=h(1t) and h2(t)=h(t), then we get the generalized relative semi-(m,h)-preinvex mappings.

  5. Taking h1(t)=h2(t)=t(1t), then we get the generalized relative semi-(m,tgs)-preinvex mappings.

  6. Taking h1(t)=1t2t and h2(t)=t21t , then we get the generalized relative semi-m-MT-preinvex mappings.

It is worth mentioning here that to the best of our knowledge all the special cases discussed above are new in the literature.

For establishing our main results we need to prove the following lemma.

Lemma 2.7.

Let ψ:IK and g:K are continuous functions and m:[0,1](0,1]. Suppose K=[m(t)ψ(a),m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))] be an open m-invex subset with respect to Λ:K×K for Λ(ψ(b),m(t)ψ(a))>0 and t[0,1]. Assume that f:K be a differentiable mapping on K. If f,gL(K), then the following equality for ν>0 holds:

(2.2)(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds)ν×[f(m(t)ψ(a))+f(m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a)))]νm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(m(t)ψ(a)ξg(s)Eμ,ν,lγ,δ,k(ωsμ)ds)ν1×g(ξ)Eμ,ν,lγ,δ,k(ωξμ)f(ξ)dξνm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds)ν1×g(ξ)Eμ,ν,lγ,δ,k(ωξμ)f(ξ)dξ=m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(m(t)ψ(a)ξg(s)Eμ,ν,lγ,δ,k(ωsμ)ds)νf'(ξ)dξm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds)ν×f'(ξ)dξ.

We denote

(2.3)If,g,E,Λ,ψ,m(ν,a,b):=m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(m(t)ψ(a)ξg(s)Eμ,ν,lγ,δ,k(ωsμ)ds)ν×f'(ξ)dξm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds)ν×f(ξ)dξ.

Proof. Integrating by parts, we get

If,g,E,Λ,ψ,m(ν,a,b)=(m(t)ψ(a)ξg(s)Eμ,ν,lγ,δ,k(ωsμ)ds)νf(ξ)|m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))νm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(m(t)ψ(a)ξg(s)Eμ,ν,lγ,δ,k(ωsμ)ds)v1×g(ξ)Eμ,ν,lγ,δ,k(ωξμ)f(ξ)dξ(ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds)νf(ξ)|m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))νm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds)v1×g(ξ)Eμ,ν,lγ,δ,k(ωξμ)f(ξ)dξ=(ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds)ν×[f(m(t)ψ(a))+f(m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a)))]νm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(m(t)ψ(a)ξg(s)Eμ,ν,lγ,δ,k(ωsμ)ds)v1×g(ξ)Eμ,ν,lγ,δ,k(ωξμ)f(ξ)dξνm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds)v1×g(ξ)Eμ,ν,lγ,δ,k(ωξμ)f(ξ)dξ.
This completes the proof of the lemma.

Using Lemma 2.7, we now state the following theorems for the corresponding version for power of first derivative.

Theorem 2.8.

Let h1,h2:[0,1][0,+),ψ:IK and g:K are continuous functions and m:[0,1](0,1]. Suppose K=[m(t)ψ(a),m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))] be an open m-invex subset with respect to Λ:K×K for Λ(ψ(b),m(t)ψ(a))>0 and t[0,1]. Assume that f:K(0,+) be a differentiable mapping on K such that f,gL(K). If (f(x))q is generalized relative semi-m-(r;h1,h2)-preinvex mapping, 0<r1,k<l+μ,q>1,p1+q1=1 and ||g||=supsK|g(s)|, then the following inequality for ν>0 holds:

(2.4)|If,g,E,Λ,ψ,m(ν,a,b)|2||g||νSνΛν+1(ψ(b),m(t)ψ(a))pν+1p×(f(a))rqI1r(h1(ξ);m(ξ),r)+(f(b))rqI2r(h2(ξ);r)rq,
where
I1(h1(ξ);m(ξ),r):=01m1r(ξ)h11r(ξ)dξ,I2(h2(ξ);r):=01h21r(ξ)dξ.

Proof. From Lemma 2.7, the generalized relative semi-m-(r;h1,h2)-preinvexity of (f(x))q, Hölder inequality, Minkowski inequality, absolute convergence of Mittag-Leffler function, properties of the modulus, the fact g(s)g,sK and changing the variable u=m(t)ψ(a)+ξΛ(ψ(b),m(t)ψ(a)),t[0,1], we have

|If,g,E,Λ,ψ,m(ν,a,b)|m(t)ψ(a)(m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|m(t)ψ(a)ξg(s)Eμ,ν,lγ,δ,k(ωsμ)ds|v×|f(ξ)|dξ+m(t)ψ(a)(m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds|v×|f(ξ)|dξ(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|m(t)ψ(a)ξg(s)Eμ,ν,lγ,δ,k(ωsμ)ds|pvdξ)1p×(m(t)ψ(a)(m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(f(ξ))qdξ)1q+(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,ν,lγ,δ,k(ωsμ)ds|pvdξ)1p×(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(f(ξ))qdξ)1q
gvSv×(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(f(ξ))qdξ)1q×{(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(ξ(m(t)ψ(a))pvdξ)1p+(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))ξ)pvdξ)1p}=2gvSvΛv+1(ψ(b),m(t)ψ(a))pv+1p×(01(f(m(t)ψ(a)+ξΛ(ψ(b),m(t)ψ(a))))qdξ)1q2gvSvΛv+1(ψ(b),m(t)ψ(a))pv+1p×(01[m(ξ)h1(ξ)(f(a))rq+h2(ξ)(f(b))rq]1rdξ)1q2gvSvΛv+1(ψ(b),m(t)ψ(a))pv+1p×[(01m1r(ξ)(f(a))qh11r(ξ)dξ)r+(01(f(b))qh21r(ξ)dξ)r]1rq=2gvSvΛv+1(ψ(b),m(t)ψ(a))pv+1p×(f(a))rqI1r(h1(ξ);m(ξ),r)+(f(b))rqI2r(h2(ξ);r).rq

So, the proof of this theorem is completed.

Remark 2.9.

In Theorem 2.8, for h1(t)=t,h2(t)=1t,r=1, if we choose Λ(ψ(b),m(t)ψ(a))=ψ(b)m(t)ψ(a), where m(t)1,t[0,1] and ψ(x)=x,xI, then

  1. If we put ω=0, we get [[28], Theorem 7].

  2. If we put ω=0 along with ν=αk , we get [[10], Theorem 2.5].

  3. If we put g(s)=1 and ω=0, we get [[6], Theorem 2.3].

  4. If we put ω=0 and ν=1, we get [[6], Corollary 3].

Remark 2.10.

In Theorem 2.8, for h1(t)=t,h2(t)=1t,r=1, if we choose Λ(ψ(b),m(t)ψ(a))=ψ(b)m(t)ψ(a), where m(t)1,t[0,1] and ψ(x)=x,xI, we get [[9], Corollary 3.8].

We point out some special cases of Theorem 2.8.

Corollary 2.11.

In Theorem 2.8 for p=q=2, we get the following inequality:

(2.5)|If,g,E,Λ,ψ,m(ν,a,b)|2gνSνΛν+1(ψ(b),m(t)ψ(a))2ν+1(f(a))2rI1r(h1(ξ);m(ξ),r)+(f(b))2rI2r(h2(ξ);r)2r.

Corollary 2.12.

In Theorem 2.8 for g(s)=1, we get the following inequality:

(2.6)|If,E,Λ,ψ,m(ν,a,b)|=|(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))Eμ,v,lγ,δ,k(ωsμ)ds)ν[f(m(t)ψ(a))+f(m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a)))]νm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(m(t)ψ(a)ξEμ,ν,lγ,δ,k(ωsμ)ds)v1Eμ,ν,lγ,δ,k(ωξμ)f(ξ)dξνm(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))(ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))Eμ,ν,lγ,δ,k(ωsμ)ds)v1×Eμ,ν,lγ,δ,k(ωsμ)f(ξ)dξ|2SvΛv+1(ψ(b),m(t)ψ(a))pv+1p(f(a))rqI1r(h1(ξ);m(ξ),r)+(f(b))rqI2r(h2(ξ);r).rq

Corollary 2.13.

In Theorem 2.8 for h1(t)=h2(t)=1 and m(t)=m(0,1] for all t[0,1], we get the following inequality for the generalized relative semi-(m,P)-preinvex mappings: (2.7)

(2.7)|If,g,E,Λ,ψ,m(ν,a,b)|2gνSνΛν+1(ψ(b),mψ(a))pν+1pm(f(a))rq+(f(b))rqrq.

Corollary 2.14.

In Theorem 2.8 for h1(t)=h(1t),h2(t)=h(t) and m(t)=m(0,1] for all t[0,1], we get the following inequality for the generalized relative semi-(m,h)-preinvex mappings:

(2.8)|If,g,E,Λ,ψ,m(ν,a,b)|2gνSνΛν+1(ψ(b),mψ(a))pν+1p×I2(h(ξ);r)qm(f(a))rq+(f(b))rqrq.

Corollary 2.15.

In Corollary 2.14 for h1(t)=(1t)s and h2(t)=ts, we get the following inequality for the generalized relative semi-(m,s)-Breckner-preinvex mappings:

(2.9)|If,g,E,Λ,ψ,m(ν,a,b)|2gνSνΛν+1(ψ(b),mψ(a))pν+1p×rr+sqm(f(a))rq+(f(b))rqrq.

Corollary 2.16.

In Corollary 2.14 for h1(t)=(1t)s,h2(t)=ts and 0<s<r, we get the following inequality for the generalized relative semi-(m,s)-Godunova–Levin–Dragomir-preinvex mappings:

(2.10)|If,g,E,Λ,ψ,m(ν,a,b)|2gνSνΛν+1(ψ(b),mψ(a))pν+1p×rrsqm(f(a))rq+(f(b))rqrq.

Corollary 2.17.

In Theorem 2.8 for h1(t)=h2(t)=t(1t) and m(t)=m(0,1] for all t[0,1], we get the following inequality for the generalized relative semi-(m,tgs)-preinvex mappings:

(2.11)|If,g,E,Λ,ψ,m(ν,a,b)|2gνSνΛν+1(ψ(b),mψ(a))pν+1p×β(1+1r,1+1r)qm(f(a))rq+(f(b))rqrq.

Corollary 2.18.

In Corollary 2.14 for h1(t)=1t2t,h2(t)=t21t and r,(12,1] we get the following inequality for the generalized relative semi-m-MT-preinvex mappings:

(2.12)|If,g,E,Λ,ψ,m(ν,a,b)|2gνSνΛν+1(ψ(b),mψ(a))pν+1p×β(112r,1+12r)qm(f(a))rq+(f(b))rqrq.

Theorem 2.19.

Let h1,h2:[0,1][0,+),ψ:IK and g:K are continuous functions and m:[0,1](0,1]. Suppose K=[m(t)ψ(a),m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))] be an open m-invex subset with respect to Λ:K×K for Λ(ψ(b),m(t)ψ(a))>0 and t[0,1]. Assume that f:K(0,+) be a differentiable mapping on K such that f,gL(K). If (f(x))q is the generalized relative semi-m-(r;h1,h2)-preinvex mapping, 0<r1,k<l+μ,q1 and g=supsK|g(s)|, then the following inequality for ν>0 holds:

(2.13)|If,g,E,Λ,ψ,m(ν,a,b)|gνSνΛν+1(ψ(b),m(t)ψ(a))(ν+1)11q×{(f(a))rqI1r(h1(ξ);m(ξ),ν,r)+(f(b))rqI2r(h2(ξ);ν,r)rq+(f(a))rqI1¯r(h1(ξ);m(ξ),ν,r)+(f(b))rqI2¯r(h2(ξ);ν,r)rq},
where
I1(h1(ξ);m(ξ),ν,r):=01m1r(ξ)ξνh11r(ξ)dξ;I2(h2(ξ);ν,r):=01ξνh21r(ξ)dξ
and
I1¯(h1(ξ);m(ξ),ν,r):=01m1r(ξ)(1ξ)νh11r(ξ)dξ;I2¯(h2(ξ);ν,r):=01(1ξ)νh21r(ξ)dξ.

Proof. From Lemma 2.7, the generalized relative semi-m-(r;h1,h2)-preinvexity of (f(x))q, the well-known power mean inequality, Minkowski inequality, absolute convergence of Mittag-Leffler function, properties of the modulus, the fact g(s)g,sK and changing the variable u=m(t)ψ(a)+ξΛ(ψ(b),m(t)ψ(a)),t[0,1], we have

|If,g,E,Λ,ψ,m(ν,a,b)|m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|m(t)ψ(a)ξg(s)Eμ,v,lγ,δ,k(ωsμ)ds|v×|f(ξ)|dξ+m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,v,lγ,δ,k(ωsμ)ds|v×|f(ξ)|dξ(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|m(t)ψ(a)ξg(s)Eμ,v,lγ,δ,k(ωsμ)ds|v)11q×(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|m(t)ψ(a)ξg(s)Eμ,v,lγ,δ,k(ωsμ)ds|v(f(ξ))qdξ)1q+(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,v,lγ,δ,k(ωsμ)ds|vdξ)11q×(m(t)ψ(a)m(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))|ξm(t)ψ(a)+Λ(ψ(b),m(t)ψ(a))g(s)Eμ,v,lγ,δ,k(ωsμ)ds|v×(f(ξ))qdξ)1qgvSvΛv+1(ψ(b),m(t)ψ(a))(v+1)11q×{[01ξv(f(m(t)ψ(a)+ξΛ(ψ(b),m(t)ψ(a))))qdξ]1q+[01(1ξ)v(f(m(t)ψ(a)+ξΛ(ψ(b),m(t)ψ(a))))qdξ]1q}gvSvΛv+1(ψ(b),m(t)ψ(a))(v+1)11q
×{[01ξv[m(ξ)h1(f(a))rq+h2(ξ)(f(a))rq]1rdξ]1q+[01(1ξ)v[m(ξ)h1(f(a))rq+h2(ξ)(f(a))rq]1rdξ]1q}gvSvΛv+1(ψ(b),m(t)ψ(a))(v+1)11q×{[(01m1r(ξ)(f(a))qξvh11r(ξ)dξ)r+(01(f(b))qξvh21r(ξ)dξ)r]1rq+[(01m1r(ξ)(f(a))q(1ξ)vh11r(ξ)dξ)r+(01(f(b))q(1ξ)vh21r(ξ)dξ)r]1rq}=gvSvΛv+1(ψ(b),m(t)ψ(a))(v+1)11q×{(f(a))rqI1r(h1(ξ);m(ξ),v,r)+(f(a))rqI2r(h2(ξ);v,r)rq+(f(a))rqI1¯r(h1(ξ);m(ξ),v,r)+(f(a))rqI2¯r(h2(ξ);v,r)rq}.

So, the proof of this theorem is completed.

We point out some special cases of Theorem 2.19.

Corollary 2.20.

In Theorem 2.19 for q=1, we get the following inequality:

(2.14)|If,g,E,Λ,ψ,m(ν,a,b)|gνSνΛν+1(ψ(b),m(t)ψ(a))×{(f(a))rI1r(h1(ξ);m(ξ),ν,r)+(f(b))rI2r(h2(ξ);ν,r)r+(f(a))rI1¯r(h1(ξ);m(ξ),ν,r)+(f(b))rI2¯r(h2(ξ);ν,r)r}.

Corollary 2.21.

In Theorem 2.19 for g(s)=1, we get the following inequality:

(2.15)|If,E,Λ,ψ,m(ν,a,b)|SνΛν+1(ψ(b),m(t)ψ(a))(ν+1)11q×{(f(a))rqI1r(h1(ξ);m(ξ),ν,r)+(f(b))rqI2r(h2(ξ);ν,r)rq+(f(a))rqI1¯r(h1(ξ);m(ξ),ν,r)+(f(b))rqI2¯r(h2(ξ);ν,r)rq}.

Corollary 2.22.

In Theorem 2.19 for h1(t)=h2(t)=1 and m(t)=m(0,1] for all t[0,1], we get the following inequality for the generalized relative semi-(m,P)-preinvex mappings:

(2.16)|If,g,E,Λ,ψ,m(ν,a,b)|2gνSνΛν+1(ψ(b),mψ(a))ν+1m(f(a))rq+(f(b))rqrq.

Corollary 2.23.

In Theorem 2.19 for h1(t)=h(1t),h2(t)=h(t) and m(t)=m(0,1] for all t[0,1], we get the following inequality for the generalized relative semi- (m,h)-preinvex mappings:

(2.17)|If,g,E,Λ,ψ,m(ν,a,b)|gνSνΛν+1(ψ(b),mψ(a))(ν+1)11q×{m(f(a))rqI2r(h(1ξ);ν,r)+((f(b))rqI2r(h(ξ);ν,r)rq+m(f(a))rqI1¯r(h(1ξ);ν,r)+((f(b))rqI2¯r(h(ξ);ν,r)rq}.

Corollary 2.24.

In Corollary 2.23 for h1(t)=(1t)s and h2(t)=ts, we get the following inequality for the generalized relative semi-(m,s)-Breckner-preinvex mappings:

(2.18)|If,g,E,Λ,ψ,m(ν,a,b)|gνSνΛν+1(ψ(b),mψ(a))(ν+1)11q×{m(f(a))rqβr(sr+1,v+1)+(f(b))rq(1sr+ν+1)rrq+m(f(a))rq(1sr+v+1)r+(f(b))rqβr(sr+1,v+1)rq}.

Corollary 2.25.

In Corollary 2.23 for h1(t)=(1t)s,h2(t)=ts and 0<s<r, we get the following inequality for the generalized relative semi-(m,s)-Godunova–Levin–Dragomir-preinvex mappings:

(2.19)|If,g,E,Λ,ψ,m(ν,a,b)|gνSνΛν+1(ψ(b),mψ(a))(v+1)11q×{m(f(a))rqβr(1sr,ν+1)+(f(b))rq(1νsr+1)rrq+m(f(a))rq(1vst+1)r+(f(b))rqβr(1sr,v+1)rq}.

Corollary 2.26.

In Theorem 2.19 for h1(t)=h2(t)=t(1t) and m(t)=m(0,1] for all t[0,1], we get the following inequality for the generalized relative semi-(m,tgs)-preinvex mappings:

(2.20)|If,g,E,Λ,ψ,m(ν,a,b)|2gνSνΛν+1(ψ(b),mψ(a))(ν+1)11qβ(1+1r,ν+1r+1)q×m(f(a))rq+(f(b))rqrq.

Corollary 2.27.

In Corollary 2.23 for h1(t)=1t2t,h2(t)=t21t and r(12,1], we get the following inequality for the generalized relative semi-m- MT-preinvex mappings:

(2.21)|If,g,E,Λ,ψ,m(ν,a,b)|gνSνΛν+1(ψ(b),mψ(a))(v+1)11q×{m(f(a))rqβr(ν12r+1,1+12r)+(f(b))rqβr(ν+12r+1,112r)rq+m(f(a))rqβr(ν+12r+1,112r)+(f(b))rqβr(ν12r+1,1+12r)rq}.

Remark 2.28.

By taking particular values of parameters used in Mittag-Leffler function in Theorems 2.8 and 2.19, several fractional integral inequalities can be obtained.

Remark 2.29.

Also, applying our Theorems 2.8 and 2.19, for f(x)K, for all xI, we can get some new fractional integral inequalities.

3. Applications to special means

Definition 3.1.

([2]). A function M:+2+, is called a Mean function if it has the following properties:

  1. Homogeneity: M(ax,ay)=aM(x,y), for all a>0,

  2. Symmetry: M(x,y)=M(y,x),

  3. Reflexivity: M(x,x)=x,

  4. Monotonicity: If xx and yy, then M(x,y)M(x,y),

  5. Internality: m{x,y}M(x,y)m{x,y}.

Let us consider some special means for arbitrary positive real numbers αβ as follows: The arithmetic mean A:=A(α,β); The geometric mean G:=G(α,β); The harmonic mean H:=H(α,β); The power mean Pr:=Pr(α,β); The identric mean I:=I(α,β); The logarithmic mean L:=L(α,β); The generalized log-mean Lp:=Lp(α,β); The weighted p-power mean M=Mp. Now, let a and b be positive real numbers such that a<b. Consider the function M¯:=M(ψ(a),ψ(b)):[ψ(a),ψ(a)+Λ(ψ(b),ψ(a))]×[ψ(a),ψ(a)+Λ(ψ(b),ψ(a))]+, which is one of the above mentioned means, therefore one can obtain various inequalities using the results of Section 2 for these means as follows: Replace Λ(ψ(y),m(t)ψ(x)) with Λ(ψ(y),ψ(x)) where m(t)1, for all t[0,1] and setting Λ(ψ(y),ψ(x))=M(ψ(x),ψ(y)) for all x,yI, in (2.4) and (2.13), one can obtain the following interesting inequalities involving means:

(3.1)|If,g,E,M¯,ψ(ν,a,b)|2gνSνM¯ν+1pv+1p×(f(a))rqI2r(h1(ξ);r)+(f(b))rqI2r(h2(ξ);r)rq,
(3.2)|If,g,E,M¯,ψ(ν,a,b)|gνSvM¯ν+1(v+1)11q×{(f(a))rqI2r(h1(ξ);ν,r)+(f(b))rqI2r(h2(ξ);ν,r)rq+(f(a))rqI1¯r(h1(ξ);ν,r)+(f(b))rqI2¯r(h2(ξ);ν,r)rq}.

Letting M¯:=A,G,H,Pr,I,L,Lp,Mp in (3.1) and (3.2), we get the inequalities involving means for particular choices of (f(x))q that are the generalized relative semi-1-(r;h1,h2)-preinvex mappings.

Remark 3.2.

Also, applying our Theorems 2.8 and 2.19 for appropriate choices of functions h1 and h2 (see Remark 2.6) such that (f(x))q to be the generalized relative semi-1-(r;h1,h2)-preinvex mappings (see examples: f(x)=xα, where α>1,x>0; f(x)=1x,x>0; f(x)=ex,x; f(x)=lnx,x>0; etc.), we can deduce some new inequalities using above special means. The details are left to the interested reader.

References

[1]T. Antczak, Mean value in invexity analysis, Nonlinear Anal. 60 (2005) 14731484.

[2]P.S. Bullen, Handbook of Means and their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.

[3]F.X. Chen, S.H. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl. 9 (2) (2016) 705716.

[4]Y.-M. Chu, M.A. Khan, T.U. Khan, T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl. 9 (5) (2016) 43054316.

[5]Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1 (1) (2010) 5158.

[6]S.S. Dragomir, R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett. 11 (5) (1998) 9195.

[7]S.S. Dragomir, J. Pečarić, L.E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995) 335341.

[8]T.S. Du, J.G. Liao, Y.J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized(s,m)-preinvex functions, J. Nonlinear Sci. Appl. 9 (2016) 31123126.

[9]G. Farid, G. Abbas, Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function, Stud. Univ. BabeŞ-Bolyai Math. 63 (1) (2018) 2335.

[10]G. Farid, A.U. Rehman, Generalizations of some integral inequalities for fractional integrals, Ann. Math. Sil. 31 (2017) 14.

[11]C. Fulga, V. Preda, Nonlinear programming with φ-preinvex and local φ-preinvex functions, European J. Oper. Res. 192 (2009) 737743.

[12]A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for generalized (r;s,m,φ)-preinvex functions, Eur. J. Pure Appl. Math. 10 (3) (2017) 495505.

[13]A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities for MT(m,ϕ)-preinvex functions, Stud. Univ. BabeŞ-Bolyai, Math. 62 (4) (2017) 439450.

[14]A. Kashuri, R. Liko, Hermite-Hadamard type inequalities for generalized (s,m,ϕ)-preinvex functions via k-fractional integrals, Tbil. Math. J. 10 (4) (2017) 7382.

[15]M.A. Khan, Y.-M. Chu, A. Kashuri, R. Liko, Hermite-Hadamard type fractional integral inequalities forMT(r;g,m,φ)-preinvex functions, J. Comput. Anal. Appl. 26 (8) (2019) 14871503.

[16]M.A. Khan, Y.-M. Chu, A. Kashuri, R. Liko, G. Ali, New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Spaces (2018) 6928130 pp. 9.

[17]M.A. Khan, Y. Khurshid, T. Ali, Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenian. 79 (1) (2017) 153164.

[18]W.J. Liu, Some Simpson type inequalities for h-convex and (α,m)-convex functions, J. Comput. Anal. Appl. 16 (5) (2014) 10051012.

[19]W. Liu, W. Wen, J. Park, Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes 16 (1) (2015) 249256.

[20]W. Liu, W. Wen, J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl. 9 (2016) 766777.

[21]C. Luo, T.S. Du, M.A. Khan, A. Kashuri, Y. Shen, Somek-fractional integrals inequalities through generalized λϕm-MT-preinvexity, J. Comput. Anal. Appl. 27 (4) (2019) 690705.

[22]M. Matloka, Inequalities for h-preinvex functions, Appl. Math. Comput. 234 (2014) 5257.

[23]M.A. Noor, Hermite-Hadamard integral inequalities for log-preinvexfunctions, J. Math. Anal. Approx. Theory 2 (2007) 126131.

[24]M.A. Noor, K.I. Noor, M.U. Awan, S. Khan, Hermite-Hadamard type inequalities for differentiable hϕ-preinvex functions, Arab. J. Math. 4 (2015) 6376.

[25]O. Omotoyinbo, A. Mogbodemu, Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innov. Tech. 1 (1) (2014) 112.

[26]C. Peng, C. Zhou, T.S. Du, Riemann–Liouville fractional Simpson’s inequalities through generalized (m,h1,h2)-preinvexity, Ital. J. Pure Appl. Math. 38 (2017) 345367.

[27]L.T.O. Salim, A.W. Faraj, A Generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Fract. Calc. Appl. 3 (5) (2012) 113.

[28]M.Z. Sarikaya, S. Erden, On the Hermite-Hadamard Fejér type integral inequality for convex functions, Turk. J. Anal. Number Theory 2 (3) (2014) 8589.

[29]E. Set, M.A. Noor, M.U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl. 169 (2017) 110.

[30]H.M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211 (1) (2009) 198210.

[31]M. Tunç, E. Göv, Ü. Şanal, On tgs-convex function and their inequalities, Facta Univ. Ser. Math. Inform. 30 (5) (2015) 679691.

[32]Y. Zhang, T.S. Du, H. Wang, Y.J. Shen, A. Kashuri, Extensions of different type parameterized inequalities for generalized (m, h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl. 2018 (49) (2018) 30.

Acknowledgements

We thank anonymous referee for his/her valuable suggestion regarding the manuscript. The publisher wishes to inform readers that the article “Some new fractional integral inequalities for generalized relative semi-m-(r; h1, h2)-preinvex mappings via generalized Mittag-Leffler function” was originally published by the previous publisher of the Arab Journal of Mathematical Sciences and the pagination of this article has been subsequently changed. There has been no change to the content of the article. This change was necessary for the journal to transition from the previous publisher to the new one. The publisher sincerely apologises for any inconvenience caused. To access and cite this article, please use Kashuri, A., Liko, R. (2019), “Some new fractional integral inequalities for generalized relative semi-m-(r; h1, h2)-preinvex mappings via generalized Mittag-Leffler function”, Arab Journal of Mathematical Sciences, Vol. 26 No. 1/2, pp. 41-55, The original publication date for this paper was 02/01/19.

Corresponding author

Artion Kashuri can be contacted at: artionkashuri@gmail.com

Related articles