Search results

1 – 10 of 24
Article
Publication date: 19 April 2024

Tuğçe Özoğul Balyali

Although existing studies provide valuable insight into how destinations create stimuli that support meaningful experiences, perceptions of different experiencescapes in the…

Abstract

Purpose

Although existing studies provide valuable insight into how destinations create stimuli that support meaningful experiences, perceptions of different experiencescapes in the tourism context remain to be explored. This research aims to explore the experiencescape stimuli of female digital nomads.

Design/methodology/approach

The study adopted a qualitative research method and was structured by combining multiple qualitative data collection tools with a triangulated approach to examining the experiencescape.

Findings

Based on the experiences of female digital nomads toward destinations, their perception of the experiencescape, which includes sensory, functional, social, natural and cultural stimuli, has been revealed. From the explanations regarding the metaphors, the female digital nomads in the research have positive perceptions about destination experiences and are satisfied with being digital nomads.

Research limitations/implications

The fact that the research is the first to focus on digital nomadism and experiencescape and that it reveals the perspective of female digital nomads who share their experiences in virtual communities, which is a research topic that is little emphasized in the literature, is a contribution to the theoretical framework on the subject. The practical contribution is that it will guide studies to improve and re-plan experiences in line with the stimuli emphasized by the female digital nomads studied. The results can play a supporting role in developing the market for female digital nomads.

Originality/value

This research offers a new perspective on exploring female digital nomads' perceptions of the destination experiencescape.

Details

Worldwide Hospitality and Tourism Themes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1755-4217

Keywords

Abstract

Details

Capitalism, Health and Wellbeing
Type: Book
ISBN: 978-1-83797-897-7

Article
Publication date: 9 May 2024

Sadi Seyama-Mokhaneli

This paper draws on African anti-colonial thought and Black consciousness to propose critical conscious leadership (CCL) as a decolonising leadership approach appropriate for…

Abstract

Purpose

This paper draws on African anti-colonial thought and Black consciousness to propose critical conscious leadership (CCL) as a decolonising leadership approach appropriate for pursuing emancipation, social justice and innovation in a new African university.

Design/methodology/approach

I utilised the method of critical discourse analysis to study Ihron Rensburg’s language as he reflected on his leadership at the University of Johannesburg (UJ). The study engaged with Rensburg’s writings and texts on his account of leading the merger and transformation of UJ. The primary text draws from his book “Serving Higher Purposes” (2020).

Findings

Through the construction of CCL, the paper proposes alternative tenets for leading transformation towards a new African university. CCL grounds a decolonised and pluriversal new African university’s character premised on a consciously revitalised alternative thinking that will carry the communitarian spirit of Africa in knowledge production, dissemination and consumption in humanising all and serving the greater good. And it operates within the dialectical tensions of the social and economic purpose of higher education (HE), African and global relevance, African and Western paradigms, excellent performance and attainment of social justice.

Originality/value

The proposed CCL offers an alternative leadership approach that responds to the call to “Dethrone the Empire” by centring Blackness in HE leadership, which is crucial for authentic transformation and decolonisation.

Details

Equality, Diversity and Inclusion: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-7149

Keywords

Article
Publication date: 15 April 2024

Boussad Moualek, Simon Chauviere, Lamia Belguerras, Smail Mezani and Thierry Lubin

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Abstract

Purpose

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Design/methodology/approach

The paper deals with the design of an MRI compatible electrical actuator. Three-dimensional electromagnetic and thermal analytical models have been developed to design the actuator. These models have been validated through 3D finite element (FE) computations. The analytical models have been inserted in an optimization procedure that uses genetic algorithms to find the optimal parameters of the actuator.

Findings

The analytical models are very fast and precise compared to the FE models. The computation time is 0.1 s for the electromagnetic analytical model and 3 min for the FE one. The optimized actuator does not perturb imaging sequence even if supplied with a current 10 times higher than its rated one. Indeed, the actuator’s magnetic field generated in the imaging area does not exceed 1 ppm of the B0 field generated by the MRI scanner. The actuator can perform up to 25 biopsy cycles without any risk to the actuator or the patient since he maximum temperature rise of the actuator is about 20°C. The actuator is compact and lightweight compared to its pneumatic counterpart.

Originality/value

The MRI compatible actuator uses the B0 field generated by scanner as inductor. The design procedure uses magneto-thermal coupled models that can be adapted to the design of a variety actuation systems working in MRI environment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 8 December 2023

Flaviana Calignano, Alessandro Bove, Vincenza Mercurio and Giovanni Marchiandi

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing…

487

Abstract

Purpose

Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.

Design/methodology/approach

Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.

Findings

Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.

Originality/value

In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 May 2024

Issah Ibrahim and David Lowther

Evaluating the multiphysics performance of an electric motor can be a computationally intensive process, especially where several complex subsystems of the motor are coupled…

Abstract

Purpose

Evaluating the multiphysics performance of an electric motor can be a computationally intensive process, especially where several complex subsystems of the motor are coupled together. For example, evaluating acoustic noise requires the coupling of the electromagnetic, structural and acoustic models of the electric motor. Where skewed poles are considered in the design, the problem becomes a purely three-dimensional (3D) multiphysics problem, which could increase the computational burden astronomically. This study, therefore, aims to introduce surrogate models in the design process to reduce the computational cost associated with solving such 3D-coupled multiphysics problems.

Design/methodology/approach

The procedure involves using the finite element (FE) method to generate a database of several skewed rotor pole surface-mounted permanent magnet synchronous motors and their corresponding electromagnetic, structural and acoustic performances. Then, a surrogate model is fitted to the data to generate mapping functions that could be used in place of the time-consuming FE simulations.

Findings

It was established that the surrogate models showed promising results in predicting the multiphysics performance of skewed pole surface-mounted permanent magnet motors. As such, such models could be used to handle the skewing aspects, which has always been a major design challenge due to the scarcity of simulation tools with stepwise skewing capability.

Originality/value

The main contribution involves the use of surrogate models to replace FE simulations during the design cycle of skewed pole surface-mounted permanent magnet motors without compromising the integrity of the electromagnetic, structural, and acoustic results of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 May 2024

Adam Sadowski, Ryszard Jędrzejczak, Dorota Starzynska and Per Engelseth

This paper aims to show the impact of applied visual management (VM) on performance in logistics operations in the construction industry.

Abstract

Purpose

This paper aims to show the impact of applied visual management (VM) on performance in logistics operations in the construction industry.

Design/methodology/approach

A case study was conducted at a branch of an international company located in Poland on VM implementation in the transport and storage of this firm. Active research was used to include the outlook of top management on the implementation and use of VMs.

Findings

This study demonstrates how VM is an effective way to improve performance in the studied logistics functions. The complex nature of the effect is revealed not only in warehouse and transport operations but also in handling operations, improving operational planning and specializing warehouse teams.

Originality/value

Organizational culture, work discipline and value system in the group of production and warehouse workers is of importance in implementing and efficiently using VM resources. Using a VM is complex.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 13 May 2024

Ahmet Turgut and Begum Korunur Engiz

Currently, massive multiple-input multiple-output (m-MIMO) antennas are typically designed using complex trial-and-error methods. The purpose of this study is to determine an…

Abstract

Purpose

Currently, massive multiple-input multiple-output (m-MIMO) antennas are typically designed using complex trial-and-error methods. The purpose of this study is to determine an effective optimization method to achieve more efficient antenna design processes.

Design/methodology/approach

This paper presents the design stages of a m-MIMO antenna array compatible with 5G smartphones operating in long term evolution (LTE) bands 42, 43 and 46, based on a specific algorithm. Each antenna element in the designed 10-port m-MIMO antenna array is intended to perfectly cover the three specified LTE bands. The optimization methods used for this purpose include the Nelder–Mead simplex algorithm, covariance matrix adaptation evolution strategy, particle swarm optimization and trust region framework (TRF).

Findings

Among the primary optimization algorithms, the TRF algorithm met the defined objectives most effectively. The achieved antenna efficiency values exceeded 60.81% in the low band and 68.39% in the high band, along with perfect coverage of the desired bands, demonstrating the success of the design with the TRF algorithm. In addition, the potential electromagnetic field exposure caused by the designed m-MIMO antenna array is elaborated upon in detail using computational human models through specific absorption rate analysis.

Originality/value

The comparison of four different algorithms (two local and two global) for use in the design of a 10-element m-MIMO antenna array with a complex structural configuration and the success of the design implemented with the selected algorithm distinguish this study from others.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 April 2024

Yifan Guo, Yanling Guo, Jian Li, Yangwei Wang, Deyu Meng, Haoyu Zhang and Jiaming Dai

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering…

Abstract

Purpose

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering method and has reached the bottleneck of efficiency improvement. This study aims to develop an image-shaped laser sintering (ISLS) system based on a digital micromirror device (DMD) to address this problem. The ISLS system uses an image-shaped laser light source with a size of 16 mm × 25.6 mm instead of the traditional SLS point-laser light source.

Design/methodology/approach

The ISLS system achieves large-area image-shaped sintering of polymer powder materials by moving the laser light source continuously in the x-direction and updating the sintering pattern synchronously, as well as by overlapping the splicing of adjacent sintering areas in the y-direction. A low-cost composite powder suitable for the ISLS system was prepared using polyether sulfone (PES), pinewood and carbon black (CB) powders as raw materials. Large-sized samples were fabricated using composite powder, and the microstructure, dimensional accuracy, geometric deviation, density, mechanical properties and feasible feature sizes were evaluated.

Findings

The experimental results demonstrate that the ISLS system is feasible and can print large-sized parts with good dimensional accuracy, acceptable geometric deviations, specific small-scale features and certain density and mechanical properties.

Originality/value

This study has achieved the transition from traditional point sintering mode to image-shaped surface sintering mode. It has provided a new approach to enhance the system performance of traditional SLS.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 May 2024

Zhenshun Li, Jiaqi Li, Ben An and Rui Li

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Abstract

Purpose

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Design/methodology/approach

Five machine learning algorithms, including K-nearest neighbor, random forest, support vector machine (SVM), gradient boosting decision tree (GBDT) and artificial neural network (ANN), are applied to predict friction coefficient of textured 45# steel surface under oil lubrication. The superiority of machine learning is verified by comparing it with analytical calculations and experimental results.

Findings

The results show that machine learning methods can accurately predict friction coefficient between interfaces compared to analytical calculations, in which SVM, GBDT and ANN methods show close prediction performance. When texture and working parameters both change, sliding speed plays the most important role, indicating that working parameters have more significant influence on friction coefficient than texture parameters.

Originality/value

This study can reduce the experimental cost and time of textured 45# steel, and provide a reference for the widespread application of machine learning in the friction field in the future.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 24