Search results

1 – 10 of over 50000
Book part
Publication date: 28 September 2023

Ram Krishan

Machine learning is an algorithmic-based auto-learning mechanism that improves from its experiences. It makes use of a statistical learning method that trains and develops on its…

Abstract

Machine learning is an algorithmic-based auto-learning mechanism that improves from its experiences. It makes use of a statistical learning method that trains and develops on its own without the assistance of a person. Data, characteristics deduced from the data, and the model make up the three primary parts of a machine learning solution. Machine learning generates an algorithm from subsets of data that can utilise combinations of features and weights different from those obtained from basic principles. In this paper, an analysis of customer behaviour is predicted using different machine learning algorithms. The results of the algorithms are validated using python programming.

Details

Digital Transformation, Strategic Resilience, Cyber Security and Risk Management
Type: Book
ISBN: 978-1-80455-262-9

Keywords

Article
Publication date: 10 July 2024

Wiput Tuvayanond, Viroon Kamchoom and Lapyote Prasittisopin

This paper aims to clarify the efficient process of the machine learning algorithms implemented in the ready-mix concrete (RMC) onsite. It proposes innovative machine learning…

70

Abstract

Purpose

This paper aims to clarify the efficient process of the machine learning algorithms implemented in the ready-mix concrete (RMC) onsite. It proposes innovative machine learning algorithms in terms of preciseness and computation time for the RMC strength prediction.

Design/methodology/approach

This paper presents an investigation of five different machine learning algorithms, namely, multilinear regression, support vector regression, k-nearest neighbors, extreme gradient boosting (XGBOOST) and deep neural network (DNN), that can be used to predict the 28- and 56-day compressive strengths of nine mix designs and four mixing conditions. Two algorithms were designated for fitting the actual and predicted 28- and 56-day compressive strength data. Moreover, the 28-day compressive strength data were implemented to predict 56-day compressive strength.

Findings

The efficacy of the compressive strength data was predicted by DNN and XGBOOST algorithms. The computation time of the XGBOOST algorithm was apparently faster than the DNN, offering it to be the most suitable strength prediction tool for RMC.

Research limitations/implications

Since none has been practically adopted the machine learning for strength prediction for RMC, the scope of this work focuses on the commercially available algorithms. The adoption of the modified methods to fit with the RMC data should be determined thereafter.

Practical implications

The selected algorithms offer efficient prediction for promoting sustainability to the RMC industries. The standard adopting such algorithms can be established, excluding the traditional labor testing. The manufacturers can implement research to introduce machine learning in the quality controcl process of their plants.

Originality/value

Regarding literature review, machine learning has been assessed regarding the laboratory concrete mix design and concrete performance. A study conducted based on the on-site production and prolonged mixing parameters is lacking.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 28 September 2023

Moh. Riskiyadi

This study aims to compare machine learning models, datasets and splitting training-testing using data mining methods to detect financial statement fraud.

4040

Abstract

Purpose

This study aims to compare machine learning models, datasets and splitting training-testing using data mining methods to detect financial statement fraud.

Design/methodology/approach

This study uses a quantitative approach from secondary data on the financial reports of companies listed on the Indonesia Stock Exchange in the last ten years, from 2010 to 2019. Research variables use financial and non-financial variables. Indicators of financial statement fraud are determined based on notes or sanctions from regulators and financial statement restatements with special supervision.

Findings

The findings show that the Extremely Randomized Trees (ERT) model performs better than other machine learning models. The best original-sampling dataset compared to other dataset treatments. Training testing splitting 80:10 is the best compared to other training-testing splitting treatments. So the ERT model with an original-sampling dataset and 80:10 training-testing splitting are the most appropriate for detecting future financial statement fraud.

Practical implications

This study can be used by regulators, investors, stakeholders and financial crime experts to add insight into better methods of detecting financial statement fraud.

Originality/value

This study proposes a machine learning model that has not been discussed in previous studies and performs comparisons to obtain the best financial statement fraud detection results. Practitioners and academics can use findings for further research development.

Details

Asian Review of Accounting, vol. 32 no. 3
Type: Research Article
ISSN: 1321-7348

Keywords

Book part
Publication date: 15 March 2021

Brett Lantz

Machine learning and artificial intelligence (AI) have arisen as the availability of larger data sources, statistical methods, and computing power have rapidly and simultaneously…

Abstract

Machine learning and artificial intelligence (AI) have arisen as the availability of larger data sources, statistical methods, and computing power have rapidly and simultaneously evolved. The transformation is leading to a revolution that will affect virtually every industry. Businesses that are slow to adopt modern data practices are likely to be left behind with little chance to catch up.

The purpose of this chapter is to provide a brief overview of machine learning and AI in the business setting. In addition to providing historical context, the chapter also provides justification for AI investment, even in industries in which data is not the core business function. The means by which computers learn is de-mystified and various algorithms and evaluation methods are presented. Lastly, the chapter considers various ethical and practical consequences of machine learning algorithms after implementation.

Details

The Machine Age of Customer Insight
Type: Book
ISBN: 978-1-83909-697-6

Keywords

Article
Publication date: 23 November 2022

Ibrahim Karatas and Abdulkadir Budak

The study is aimed to compare the prediction success of basic machine learning and ensemble machine learning models and accordingly create novel prediction models by combining…

Abstract

Purpose

The study is aimed to compare the prediction success of basic machine learning and ensemble machine learning models and accordingly create novel prediction models by combining machine learning models to increase the prediction success in construction labor productivity prediction models.

Design/methodology/approach

Categorical and numerical data used in prediction models in many studies in the literature for the prediction of construction labor productivity were made ready for analysis by preprocessing. The Python programming language was used to develop machine learning models. As a result of many variation trials, the models were combined and the proposed novel voting and stacking meta-ensemble machine learning models were constituted. Finally, the models were compared to Target and Taylor diagram.

Findings

Meta-ensemble models have been developed for labor productivity prediction by combining machine learning models. Voting ensemble by combining et, gbm, xgboost, lightgbm, catboost and mlp models and stacking ensemble by combining et, gbm, xgboost, catboost and mlp models were created and finally the Et model as meta-learner was selected. Considering the prediction success, it has been determined that the voting and stacking meta-ensemble algorithms have higher prediction success than other machine learning algorithms. Model evaluation metrics, namely MAE, MSE, RMSE and R2, were selected to measure the prediction success. For the voting meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R2 are 0.0499, 0.0045, 0.0671 and 0.7886, respectively. For the stacking meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R2 are 0.0469, 0.0043, 0.0658 and 0.7967, respectively.

Research limitations/implications

The study shows the comparison between machine learning algorithms and created novel meta-ensemble machine learning algorithms to predict the labor productivity of construction formwork activity. The practitioners and project planners can use this model as reliable and accurate tool for predicting the labor productivity of construction formwork activity prior to construction planning.

Originality/value

The study provides insight into the application of ensemble machine learning algorithms in predicting construction labor productivity. Additionally, novel meta-ensemble algorithms have been used and proposed. Therefore, it is hoped that predicting the labor productivity of construction formwork activity with high accuracy will make a great contribution to construction project management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 August 2024

Sooin Kim, Atefe Makhmalbaf and Mohsen Shahandashti

This research aims to forecast the ABI as a leading indicator of U.S. construction activities, applying multivariate machine learning predictive models over different horizons and…

Abstract

Purpose

This research aims to forecast the ABI as a leading indicator of U.S. construction activities, applying multivariate machine learning predictive models over different horizons and utilizing the nonlinear and long-term dependencies between the ABI and macroeconomic and construction market variables. To assess the applicability of the machine learning models, six multivariate machine learning predictive models were developed considering the relationships between the ABI and other construction market and macroeconomic variables. The forecasting performances of the developed predictive models were evaluated in different forecasting scenarios, such as short-term, medium-term, and long-term horizons comparable to the actual timelines of construction projects.

Design/methodology/approach

The architecture billings index (ABI) as a macroeconomic indicator is published monthly by the American Institute of Architects (AIA) to evaluate business conditions and track construction market movements. The current research developed multivariate machine learning models to forecast ABI data for different time horizons. Different macroeconomic and construction market variables, including Gross Domestic Product (GDP), Total Nonresidential Construction Spending, Project Inquiries, and Design Contracts data were considered for predicting future ABI values. The forecasting accuracies of the machine learning models were validated and compared using the short-term (one-year-ahead), medium-term (three-year-ahead), and long-term (five-year-ahead) ABI testing datasets.

Findings

The experimental results show that Long Short Term Memory (LSTM) provides the highest accuracy among the machine learning and traditional time-series forecasting models such as Vector Error Correction Model (VECM) or seasonal ARIMA in forecasting the ABIs over all the forecasting horizons. This is because of the strengths of LSTM for forecasting temporal time series by solving vanishing or exploding gradient problems and learning long-term dependencies in sequential ABI time series. The findings of this research highlight the applicability of machine learning predictive models for forecasting the ABI as a leading indicator of construction activities, business conditions, and market movements.

Practical implications

The architecture, engineering, and construction (AEC) industry practitioners, investment groups, media outlets, and business leaders refer to ABI as a macroeconomic indicator to evaluate business conditions and track construction market movements. It is crucial to forecast the ABI accurately for strategic planning and preemptive risk management in fluctuating AEC business cycles. For example, cost estimators and engineers who forecast the ABI to predict future demand for architectural services and construction activities can prepare and price their bids more strategically to avoid a bid loss or profit loss.

Originality/value

The ABI data have been forecasted and modeled using linear time series models. However, linear time series models often fail to capture nonlinear patterns, interactions, and dependencies among variables, which can be handled by machine learning models in a more flexible manner. Despite the strength of machine learning models to capture nonlinear patterns and relationships between variables, the applicability and forecasting performance of multivariate machine learning models have not been investigated for ABI forecasting problems. This research first attempted to forecast ABI data for different time horizons using multivariate machine learning predictive models using different macroeconomic and construction market variables.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 February 2023

Marko Kureljusic and Jonas Metz

The accurate prediction of incoming cash flows enables more effective cash management and allows firms to shape firms' planning based on forward-looking information. Although most…

Abstract

Purpose

The accurate prediction of incoming cash flows enables more effective cash management and allows firms to shape firms' planning based on forward-looking information. Although most firms are aware of the benefits of these forecasts, many still have difficulties identifying and implementing an appropriate prediction model. With the rise of machine learning algorithms, numerous new forecasting techniques have emerged. These new forecasting techniques are theoretically applicable for predicting customer payment behavior but have not yet been adequately investigated. This study aims to close this research gap by examining which machine learning algorithm is the most appropriate for predicting customer payment dates.

Design/methodology/approach

By using various machine learning algorithms, the authors evaluate whether customer payment behavior patterns can be identified and predicted. The study is based on real-world transaction data from a DAX-40 firm with over 1,000,000 invoices in the dataset, with the data covering the period 2017–2019.

Findings

The authors' results show that neural networks in particular are suitable for predicting customers' payment dates. Furthermore, the authors demonstrate that contextual and logical prediction models can provide more accurate forecasts than conventional baseline models, such as linear and multivariate regression.

Research limitations/implications

Future cash flow forecasting studies should incorporate naïve prediction models, as the authors demonstrate that these models can compete with conventional baseline models used in existing machine learning research. However, the authors expect that with more in-depth information about the customer (creditworthiness, accounting structure) the results can be even further improved.

Practical implications

The knowledge of customers' future payment dates enables firms to change their perspective and move from reactive to proactive cash management. This shift leads to a more targeted dunning process.

Originality/value

To the best of the authors' knowledge, no study has yet been conducted that interprets the prediction of incoming payments as a daily rolling forecast by comparing naïve forecasts with forecasts based on machine learning and deep learning models.

Details

Journal of Applied Accounting Research, vol. 24 no. 4
Type: Research Article
ISSN: 0967-5426

Keywords

Open Access
Article
Publication date: 15 August 2023

Doreen Nkirote Bundi

The purpose of this study is to examine the state of research into adoption of machine learning systems within the health sector, to identify themes that have been studied and…

3408

Abstract

Purpose

The purpose of this study is to examine the state of research into adoption of machine learning systems within the health sector, to identify themes that have been studied and observe the important gaps in the literature that can inform a research agenda going forward.

Design/methodology/approach

A systematic literature strategy was utilized to identify and analyze scientific papers between 2012 and 2022. A total of 28 articles were identified and reviewed.

Findings

The outcomes reveal that while advances in machine learning have the potential to improve service access and delivery, there have been sporadic growth of literature in this area which is perhaps surprising given the immense potential of machine learning within the health sector. The findings further reveal that themes such as recordkeeping, drugs development and streamlining of treatment have primarily been focused on by the majority of authors in this area.

Research limitations/implications

The search was limited to journal articles published in English, resulting in the exclusion of studies disseminated through alternative channels, such as conferences, and those published in languages other than English. Considering that scholars in developing nations may encounter less difficulty in disseminating their work through alternative channels and that numerous emerging nations employ languages other than English, it is plausible that certain research has been overlooked in the present investigation.

Originality/value

This review provides insights into future research avenues for theory, content and context on adoption of machine learning within the health sector.

Details

Digital Transformation and Society, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0761

Keywords

Article
Publication date: 16 August 2021

Rajshree Varma, Yugandhara Verma, Priya Vijayvargiya and Prathamesh P. Churi

The rapid advancement of technology in online communication and fingertip access to the Internet has resulted in the expedited dissemination of fake news to engage a global…

1477

Abstract

Purpose

The rapid advancement of technology in online communication and fingertip access to the Internet has resulted in the expedited dissemination of fake news to engage a global audience at a low cost by news channels, freelance reporters and websites. Amid the coronavirus disease 2019 (COVID-19) pandemic, individuals are inflicted with these false and potentially harmful claims and stories, which may harm the vaccination process. Psychological studies reveal that the human ability to detect deception is only slightly better than chance; therefore, there is a growing need for serious consideration for developing automated strategies to combat fake news that traverses these platforms at an alarming rate. This paper systematically reviews the existing fake news detection technologies by exploring various machine learning and deep learning techniques pre- and post-pandemic, which has never been done before to the best of the authors’ knowledge.

Design/methodology/approach

The detailed literature review on fake news detection is divided into three major parts. The authors searched papers no later than 2017 on fake news detection approaches on deep learning and machine learning. The papers were initially searched through the Google scholar platform, and they have been scrutinized for quality. The authors kept “Scopus” and “Web of Science” as quality indexing parameters. All research gaps and available databases, data pre-processing, feature extraction techniques and evaluation methods for current fake news detection technologies have been explored, illustrating them using tables, charts and trees.

Findings

The paper is dissected into two approaches, namely machine learning and deep learning, to present a better understanding and a clear objective. Next, the authors present a viewpoint on which approach is better and future research trends, issues and challenges for researchers, given the relevance and urgency of a detailed and thorough analysis of existing models. This paper also delves into fake new detection during COVID-19, and it can be inferred that research and modeling are shifting toward the use of ensemble approaches.

Originality/value

The study also identifies several novel automated web-based approaches used by researchers to assess the validity of pandemic news that have proven to be successful, although currently reported accuracy has not yet reached consistent levels in the real world.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 31 January 2022

Simone Massulini Acosta and Angelo Marcio Oliveira Sant'Anna

Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms have been…

Abstract

Purpose

Process monitoring is a way to manage the quality characteristics of products in manufacturing processes. Several process monitoring based on machine learning algorithms have been proposed in the literature and have gained the attention of many researchers. In this paper, the authors developed machine learning-based control charts for monitoring fraction non-conforming products in smart manufacturing. This study proposed a relevance vector machine using Bayesian sparse kernel optimized by differential evolution algorithm for efficient monitoring in manufacturing.

Design/methodology/approach

A new approach was carried out about data analysis, modelling and monitoring in the manufacturing industry. This study developed a relevance vector machine using Bayesian sparse kernel technique to improve the support vector machine used to both regression and classification problems. The authors compared the performance of proposed relevance vector machine with other machine learning algorithms, such as support vector machine, artificial neural network and beta regression model. The proposed approach was evaluated by different shift scenarios of average run length using Monte Carlo simulation.

Findings

The authors analyse a real case study in a manufacturing company, based on best machine learning algorithms. The results indicate that proposed relevance vector machine-based process monitoring are excellent quality tools for monitoring defective products in manufacturing process. A comparative analysis with four machine learning models is used to evaluate the performance of the proposed approach. The relevance vector machine has slightly better performance than support vector machine, artificial neural network and beta models.

Originality/value

This research is different from the others by providing approaches for monitoring defective products. Machine learning-based control charts are used to monitor product failures in smart manufacturing process. Besides, the key contribution of this study is to develop different models for fault detection and to identify any change point in the manufacturing process. Moreover, the authors’ research indicates that machine learning models are adequate tools for the modelling and monitoring of the fraction non-conforming product in the industrial process.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of over 50000