Search results

1 – 4 of 4
Article
Publication date: 1 April 2024

Xiaoxian Yang, Zhifeng Wang, Qi Wang, Ke Wei, Kaiqi Zhang and Jiangang Shi

This study aims to adopt a systematic review approach to examine the existing literature on law and LLMs.It involves analyzing and synthesizing relevant research papers, reports…

Abstract

Purpose

This study aims to adopt a systematic review approach to examine the existing literature on law and LLMs.It involves analyzing and synthesizing relevant research papers, reports and scholarly articles that discuss the use of LLMs in the legal domain. The review encompasses various aspects, including an analysis of LLMs, legal natural language processing (NLP), model tuning techniques, data processing strategies and frameworks for addressing the challenges associated with legal question-and-answer (Q&A) systems. Additionally, the study explores potential applications and services that can benefit from the integration of LLMs in the field of intelligent justice.

Design/methodology/approach

This paper surveys the state-of-the-art research on law LLMs and their application in the field of intelligent justice. The study aims to identify the challenges associated with developing Q&A systems based on LLMs and explores potential directions for future research and development. The ultimate goal is to contribute to the advancement of intelligent justice by effectively leveraging LLMs.

Findings

To effectively apply a law LLM, systematic research on LLM, legal NLP and model adjustment technology is required.

Originality/value

This study contributes to the field of intelligent justice by providing a comprehensive review of the current state of research on law LLMs.

Details

International Journal of Web Information Systems, vol. 20 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 16 July 2024

Qinyuan Shen, Zhifeng Gao and Zhanguo Zhu

A meat quality grading system is essential to meet consumers' increasingly diversified demand for food quality in the global market. This study aims to determine the effectiveness…

Abstract

Purpose

A meat quality grading system is essential to meet consumers' increasingly diversified demand for food quality in the global market. This study aims to determine the effectiveness of the upcoming Chinese quality grading labels and examine the information effect of labeling standards on pork consumption choices.

Design/methodology/approach

Using an online survey with choice experiments, this study estimates consumer valuation for the fat thickness of different pork primal cuts by simulating three scenarios. Generalized mixed logit models in WTP space are used to analyze the choice experiment data.

Findings

Chinese consumers prefer lean pork to fatty pork and this preference does not vary significantly between primal cuts. Consumer valuation for ungraded high-quality (lean) pork increases after the implementation of the quality grading. Meanwhile, they are willing to pay high premiums for labeled pork (including level 1, 2, 3), and there are higher premiums for pork with higher levels. Besides, incomplete information on labeling standards could achieve more premiums for pork than relatively complete information.

Originality/value

This study pays attention to essential but few-noticed pork quality grading. The findings provide references for pork industry practices and policy-making of the meat quality grading system in China and globally by examining incomplete and relatively complete information effects on consumer choices.

Details

China Agricultural Economic Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-137X

Keywords

Article
Publication date: 9 September 2024

Yogesh Patil, Milind Akarte, K. P. Karunakaran, Ashik Kumar Patel, Yash G. Mittal, Gopal Dnyanba Gote, Avinash Kumar Mehta, Ronald Ely and Jitendra Shinde

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS…

Abstract

Purpose

Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS) and Binder jetting three-dimensional printing (BJ3DP) are widely used for patternless sand mold and core production. This study aims to perform an in-depth literature review to understand the current status, determine research gaps and propose future research directions. In addition, obtain valuable insights into authors, organizations, countries, keywords, documents, sources and cited references, sources and authors.

Design/methodology/approach

This study followed the systematic literature review (SLR) to gather relevant rapid sand casting (RSC) documents via Scopus, Web of Science and EBSCO databases. Furthermore, bibliometrics was performed via the Visualization of Similarities (VOSviewer) software.

Findings

An evaluation of 116 documents focused primarily on commercial AM setups and process optimization of the SLS. Process optimization studies the effects of AM processes, their input parameters, scanning approaches, sand types and the integration of computer-aided design in AM on the properties of sample. The authors performed detailed bibliometrics of 80 out of 120 documents via VOSviewer software.

Research limitations/implications

This review focuses primarily on the SLS AM process.

Originality/value

A SLR and bibliometrics using VOSviewer software for patternless sand mold and core production via the AM process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 1 July 2024

Rita Moura, Daniel Fidalgo, Dulce Oliveira, Ana Rita Reis, Bruno Areias, Luísa Sousa, João M. Gonçalves, Henrique Sousa, R.N. Natal Jorge and Marco Parente

During a fall, a significant part of the major forces is absorbed by the dorsolumbar column area. When the applied stresses exceed the yield strength of the bone tissue, fractures…

Abstract

Purpose

During a fall, a significant part of the major forces is absorbed by the dorsolumbar column area. When the applied stresses exceed the yield strength of the bone tissue, fractures can occur in the vertebrae. Vertebral fractures constitute one of the leading causes of trauma-related hospitalizations, accounting for 15% of all admissions. Posterior pedicle screw fixation has become a common method for treating burst fractures. However, physicians remain divided on the number of fixed segments that are needed to improve clinical outcomes. The present work aims to understand the biomechanical impact of different fixation methods, improving surgical treatments.

Design/methodology/approach

A finite element model of the dorsolumbar spine (T11–L3) section, including cartilages, discs and ligaments, was created. The dorsolumbar stability was tested by comparing two different surgical orthopedic treatments for a fractured first lumbar vertebra on the L1 vertebra: the posterior short segment fixation with intermediate screws (PSS) and the posterior long segment fixation (PL). Distinct loads were applied to represent daily activities.

Findings

Results show that both procedures provide acceptable segment fixation, with the PL offering less freedom of movement, making it more stable than the PSS. The PL approach can be the best choice for an unstable fracture as it leads to a stiffer spine segment.

Originality/value

This study introduces a novel computational model designed for the biomechanical analysis of dorsolumbar injuries, aiming to identify the optimal treatment approaches within both clinical and surgical contexts.

1 – 4 of 4