Search results

1 – 10 of 18
Open Access
Article
Publication date: 19 June 2023

Fang Wen, Yun Bai, Xin Zhang, Yao Chen and Ninghai Li

This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.

Abstract

Purpose

This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.

Design/methodology/approach

A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway, the minimum headway and the latest end-of-operation time. The objective of the model is to maximize the number of reachable passengers in the end-of-operation period. A solution method based on a preset train service is proposed, which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.

Findings

The results of the case study of Wuhan Metro show that the solution method can obtain high-quality solutions in a shorter time; and the shorter the time interval of passenger flow data, the more obvious the advantage of solution speed; after optimization, the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.

Originality/value

Existing research results only consider the passengers who take the last train. Compared with previous research, considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination. Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network, but due to the decrease in passenger demand, postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.

Open Access
Article
Publication date: 13 September 2023

Siyao Li, Bo Yuan, Yun Bai and Jianfeng Liu

To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following…

Abstract

Purpose

To address the problem that the current train operation mode that train selects one of several offline pre-generated control schemes before the departure and operates following the scheme after the departure, energy-saving performance of the whole metro system cannot be guaranteed.

Design/methodology/approach

A cooperative train control framework is formulated to regulate a novel train operation mode. The classic train four-phase control strategy is improved for generating specific energy-efficient control schemes for each train. An improved brute force (BF) algorithm with a two-layer searching idea is designed to solve the optimisation model of energy-efficient train control schemes.

Findings

Case studies on the actual metro line in Guangzhou, China verify the effectiveness of the proposed train control methods compared with four-phase control strategy under different kinds of train operation scenarios and calculation parameters. The verification on the computation efficiency as well as accuracy of the proposed algorithm indicates that it meets the requirement of online optimisation.

Originality/value

Most existing studies optimised energy-efficient train timetable or train control strategies through an offline process, which has a defect in coping with the disturbance or delays effectively and promptly during real-time train operation. This paper studies an online optimisation of cooperative train control based on the rolling optimisation idea, where energy-efficient train operation can be realised once train running time is determined, thus mitigating the impact of unpredictable operation situations on the energy-saving performance of trains.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 25 October 2021

Yun Bai, Saeed Babanajad and Zheyong Bian

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces…

Abstract

Purpose

Transportation infrastructure asset management has long been an active but challenging problem for agencies, which urges to maintain a good state of their assets but faces budgetary limitations. Managing a network of transportation infrastructure assets, especially when the number is large, is a multifaceted challenge. This paper aims to develop a life-cycle cost analysis (LCCA) based transportation infrastructure asset management analytical framework to study the impacts of a few key parameters/factors on deterioration and life-cycle cost. Using the bridge as an example infrastructure type, the framework incorporates an optimization model for optimizing maintenance, repair, rehabilitation (MR&R) and replacement decisions in a finite planning horizon.

Design/methodology/approach

The analytical framework is further developed through a series of model variations, scenario and sensitivity analysis, simulation processes and numerical experiments to show the impacts of various parameters/factors and draw managerial insights. One notable analysis is to explicitly model the epistemic uncertainties of infrastructure deterioration models, which have been overlooked in previous research. The proposed methodology can be adapted to different types of assets for solving general asset management and capital planning problems.

Findings

The experiments and case studies revealed several findings. First, the authors showed the importance of the deterioration model parameter (i.e. Markov transition probability). Inaccurate information of p will lead to suboptimal solutions and results in excessive total cost. Second, both agency cost and user cost of a single facility will have significant impacts on the system cost and correlation between them also influences the system cost. Third, the optimal budget can be found and the system cost is tolerant to budge variations within a certain range. Four, the model minimizes the total cost by optimizing the allocation of funds to bridges weighing the trade-off between user and agency costs.

Originality/value

On the path forward to develop the next generation of bridge management systems methodologies, the authors make an exploration of incorporating the epistemic uncertainties of the stochastic deterioration models into bridge MR&R capital planning and decision-making. The authors propose an optimization approach that does not only incorporate the inherent stochasticity of bridge deterioration but also considers the epistemic uncertainties and variances of the model parameters of Markovian transition probabilities due to data errors or modeling processes.

Open Access
Article
Publication date: 1 February 2021

Haiyang Guo, Yun Bai, Qianyun Hu, Huangrui Zhuang and Xujie Feng

To evacuate passengers arriving at intercity railway stations efficiently, metros and intercity railways usually share the same station or have stations close to each other. When…

1111

Abstract

Purpose

To evacuate passengers arriving at intercity railway stations efficiently, metros and intercity railways usually share the same station or have stations close to each other. When intercity trains arrive intensively, a great number of passengers will burst into the metro station connecting with the intercity railway station within a short period, while the number of passengers will decrease substantially when intercity trains arrive sparsely. The metro timetables with regular headway currently adopted in real-world operations cannot handle the injected passenger demand properly. Timetable optimization of metro lines connecting with intercity railway stations is essential to improve service quality.

Design/methodology/approach

Based on arrival times of intercity trains and the entire process for passengers transferring from railway to metro, this paper develops a mathematical model to characterize the time-varying demand of passengers arriving at the platform of a metro station connecting with an intercity railway station. Provided the time-varying passenger demand and capacity of metro trains, a timetable model to optimize train departure time of a bi-direction metro line where an intermediate station connects with an intercity railway station is proposed. The objective is to minimize waiting time of passengers at the connecting station. The proposed timetable model is solved by an adaptive large neighborhood search algorithm.

Findings

Real-world case studies show that the prediction accuracy of the proposed model on passenger demand at the connecting station is higher than 90%, and the timetable model can reduce waiting time of passengers at the connecting station by 28.47% which is increased by 5% approximately than the calculation results of the generic algorithm.

Originality/value

This paper puts forward a model to predict the number of passengers arriving at the platform of connection stations via analyzing the entire process for passengers transferring from intercity trains to metros. Also, a timetable optimization model aiming at minimizing passenger waiting time of a metro line where an intermediate station is connected to an intercity railway station is proposed.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 22 October 2019

Li Xuemei, Yun Cao, Junjie Wang, Yaoguo Dang and Yin Kedong

Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey…

3214

Abstract

Purpose

Research on grey systems is becoming more sophisticated, and grey relational and prediction analyses are receiving close review worldwide. Particularly, the application of grey systems in marine economics is gaining importance. The purpose of this paper is to summarize and review literature on grey models, providing new directions in their application in the marine economy.

Design/methodology/approach

This paper organized seminal studies on grey systems published by Chinese core journal database – CNKI, Web of Science and Elsevier from 1982 to 2018. After searching the aforementioned database for the said duration, the authors used the CiteSpace visualization tools to analyze them.

Findings

The authors sorted the studies according to their countries/regions, institutions, keywords and categories using the CiteSpace tool; analyzed current research characteristics on grey models; and discussed their possible applications in marine businesses, economy, scientific research and education, marine environment and disasters. Finally, the authors pointed out the development trend of grey models.

Originality/value

Although researches are combining grey theory with fractals, neural networks, fuzzy theory and other methods, the applications, in terms of scope, have still not met the demand. With the increasingly in-depth research in marine economics and management, international marine economic research has entered a new period of development. Grey theory will certainly attract scholars’ attention, and its role in marine economy and management will gain considerable significance.

Details

Marine Economics and Management, vol. 2 no. 2
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 17 December 2019

Yin Kedong, Shiwei Zhou and Tongtong Xu

To construct a scientific and reasonable indicator system, it is necessary to design a set of standardized indicator primary selection and optimization inspection process. The…

1331

Abstract

Purpose

To construct a scientific and reasonable indicator system, it is necessary to design a set of standardized indicator primary selection and optimization inspection process. The purpose of this paper is to provide theoretical guidance and reference standards for the indicator system design process, laying a solid foundation for the application of the indicator system, by systematically exploring the expert evaluation method to optimize the index system to enhance its credibility and reliability, to improve its resolution and accuracy and reduce its objectivity and randomness.

Design/methodology/approach

The paper is based on system theory and statistics, and it designs the main line of “relevant theoretical analysis – identification of indicators – expert assignment and quality inspection” to achieve the design and optimization of the indicator system. First, the theoretical basis analysis, relevant factor analysis and physical process description are used to clarify the comprehensive evaluation problem and the correlation mechanism. Second, the system structure analysis, hierarchical decomposition and indicator set identification are used to complete the initial establishment of the indicator system. Third, based on expert assignment method, such as Delphi assignments, statistical analysis, t-test and non-parametric test are used to complete the expert assignment quality diagnosis of a single index, the reliability and validity test is used to perform single-index assignment correction and consistency test is used for KENDALL coordination coefficient and F-test multi-indicator expert assignment quality diagnosis.

Findings

Compared with the traditional index system construction method, the optimization process used in the study standardizes the process of index establishment, reduces subjectivity and randomness, and enhances objectivity and scientificity.

Originality/value

The innovation point and value of the paper are embodied in three aspects. First, the system design process of the combined indicator system, the multi-dimensional index screening and system optimization are carried out to ensure that the index system is scientific, reasonable and comprehensive. Second, the experts’ background is comprehensively evaluated. The objectivity and reliability of experts’ assignment are analyzed and improved on the basis of traditional methods. Third, aim at the quality of expert assignment, conduct t-test, non-parametric test of single index, and multi-optimal test of coordination and importance of multiple indicators, enhance experts the practicality of assignment and ensures the quality of expert assignment.

Details

Marine Economics and Management, vol. 2 no. 1
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 22 November 2022

Kedong Yin, Yun Cao, Shiwei Zhou and Xinman Lv

The purposes of this research are to study the theory and method of multi-attribute index system design and establish a set of systematic, standardized, scientific index systems…

Abstract

Purpose

The purposes of this research are to study the theory and method of multi-attribute index system design and establish a set of systematic, standardized, scientific index systems for the design optimization and inspection process. The research may form the basis for a rational, comprehensive evaluation and provide the most effective way of improving the quality of management decision-making. It is of practical significance to improve the rationality and reliability of the index system and provide standardized, scientific reference standards and theoretical guidance for the design and construction of the index system.

Design/methodology/approach

Using modern methods such as complex networks and machine learning, a system for the quality diagnosis of index data and the classification and stratification of index systems is designed. This guarantees the quality of the index data, realizes the scientific classification and stratification of the index system, reduces the subjectivity and randomness of the design of the index system, enhances its objectivity and rationality and lays a solid foundation for the optimal design of the index system.

Findings

Based on the ideas of statistics, system theory, machine learning and data mining, the focus in the present research is on “data quality diagnosis” and “index classification and stratification” and clarifying the classification standards and data quality characteristics of index data; a data-quality diagnosis system of “data review – data cleaning – data conversion – data inspection” is established. Using a decision tree, explanatory structural model, cluster analysis, K-means clustering and other methods, classification and hierarchical method system of indicators is designed to reduce the redundancy of indicator data and improve the quality of the data used. Finally, the scientific and standardized classification and hierarchical design of the index system can be realized.

Originality/value

The innovative contributions and research value of the paper are reflected in three aspects. First, a method system for index data quality diagnosis is designed, and multi-source data fusion technology is adopted to ensure the quality of multi-source, heterogeneous and mixed-frequency data of the index system. The second is to design a systematic quality-inspection process for missing data based on the systematic thinking of the whole and the individual. Aiming at the accuracy, reliability, and feasibility of the patched data, a quality-inspection method of patched data based on inversion thought and a unified representation method of data fusion based on a tensor model are proposed. The third is to use the modern method of unsupervised learning to classify and stratify the index system, which reduces the subjectivity and randomness of the design of the index system and enhances its objectivity and rationality.

Details

Marine Economics and Management, vol. 5 no. 2
Type: Research Article
ISSN: 2516-158X

Keywords

Open Access
Article
Publication date: 31 December 2021

Muhammad Junaid Shahid Hasni, Maya F. Farah and Ifraaz Adeel

This paper aims to analyze the adoption of social media platforms by tourists in Pakistan. Based on an adaptation of the technology acceptance model (TAM), this study assesses the…

4469

Abstract

Purpose

This paper aims to analyze the adoption of social media platforms by tourists in Pakistan. Based on an adaptation of the technology acceptance model (TAM), this study assesses the factors that lead users to adopt these platforms.

Design/methodology/approach

A survey was administered to a convenience sample of 399 travelers who use social media in Pakistan. A Confirmatory factor analysis was conducted using AMOS to evaluate convergent and discriminant validity as well as composite reliability. Structural equation modeling was applied to examine the causal relationship among all proposed constructs.

Findings

The findings reveal that the perceived usefulness (PU) and perceived ease of use (PEoU) of a social media platform positively impact the behavioral intention of its users. The proposed constructs of compatibility, enjoyment, user expertise and e-trust all demonstrated their crucial roles in the adoption of a social media platform for tourism-related activities by enhancing the platform's PEoU and usefulness.

Originality/value

This research validates the relationship between PEoU and PU of a social media platform in the hospitality industry. Interestingly, this study has expanded TAM by validating the addition of four more constructs, (1) compatibility, (2) enjoyment, (3) e-trust, and (4) expertise, to add worth to this model regarding the understanding of social media usage in this specific industry. The findings are valuable both for managers and policymakers in the tourism sector in Pakistan, as the latter can utilize the results to entice a larger segment of social media users to the tourism industry.

Details

Journal of Tourism Futures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-5911

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 21 June 2021

Liantao Hou, Yinsheng Yang, Xiaoyi Zhang and Chunming Jiang

The relationship between farm size and greenhouse gas (GHG) emissions has not been clearly defined. This paper aims to assess and compare the impact of farm size on greenhouse gas…

2022

Abstract

Purpose

The relationship between farm size and greenhouse gas (GHG) emissions has not been clearly defined. This paper aims to assess and compare the impact of farm size on greenhouse gas (GHG) emissions derived from wheat and maize production in the North China Plain (NCP), one of the most important agricultural regions in China.

Design/methodology/approach

A field survey through face-to-face interviews was conducted to collect the primary data, and life cycle assessment method, a worldwide comparable framework, was then adopted to characterize the farm-size effect on greenhouse gas (GHG) wheat and maize production in NCP.

Findings

It was confirmed that GHG emissions from N fertilizer production and use were the primary contributor to total carbon footprint (CF). As farm size increased, maize yield increased but wheat yield barely changed, while area-scaled and yield-scaled CF declined for both crops. These results were supposed to relate to utilize the inputs more efficiently resulting from increased application of modern agriculture methods on larger operations. It was also found maize not only had higher grain yields, but possessed much smaller CFs. More notably, the reduction of CF with farm size seemed to be more sensitive for maize as compared to wheat. To further mitigate GHG emissions, farm size should better be larger for wheat than for maize.

Originality/value

This study provides useful information guide for Chinese agriculture in increasing crop production, raising farm income and relieving environmental burdens caused by the misuse of agricultural resources.

Details

International Journal of Climate Change Strategies and Management, vol. 13 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Access

Only Open Access

Year

All dates (18)

Content type

1 – 10 of 18