Search results

1 – 1 of 1
Article
Publication date: 15 March 2022

Shaoyu Zeng, Yinghui Wu and Yang Yu

The paper formulates a bi-objective mixed-integer nonlinear programming model, aimed at minimizing the total labor hours and the workload unfairness for the multi-skilled worker…

Abstract

Purpose

The paper formulates a bi-objective mixed-integer nonlinear programming model, aimed at minimizing the total labor hours and the workload unfairness for the multi-skilled worker assignment problem in Seru production system (SPS).

Design/methodology/approach

Three approaches, namely epsilon-constraint method, non-dominated sorting genetic algorithm 2 (NSGA-II) and improved strength Pareto evolutionary algorithm (SPEA2), are designed for solving the problem.

Findings

Numerous experiments are performed to assess the applicability of the proposed model and evaluate the performance of algorithms. The merged Pareto-fronts obtained from both NSGA-II and SPEA2 were proposed as final solutions to provide useful information for decision-makers.

Practical implications

SPS has the flexibility to respond to the changing demand for small amount production of multiple varieties products. Assigning cross-trained workers to obtain flexibility has emerged as a major concern for the implementation of SPS. Most enterprises focus solely on measures of production efficiency, such as minimizing the total throughput time. Solutions based on optimizing efficiency measures alone can be unacceptable by workers who have high proficiency levels when they are achieved at the expense of the workers taking more workload. Therefore, study the tradeoff between production efficiency and fairness in the multi-skilled worker assignment problem is very important for SPS.

Originality/value

The study investigates a new mixed-integer programming model to optimize worker-to-seru assignment, batch-to-seru assignment and task-to-worker assignment in SPS. In order to solve the proposed problem, three problem-specific solution approaches are proposed.

Details

Kybernetes, vol. 52 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Access

Year

Last 12 months (1)

Content type

1 – 1 of 1