Search results

1 – 4 of 4
Article
Publication date: 17 January 2020

Yang Chuangui, Mi Liang, Liu Xingbao, Xia Yangqiu, Qiang Teng and Lin Han

This paper aims to propose a reasonable method to evaluate uncertainty of measurement of industrial robots’ orientation repeatability and solve the non-linear problem existing in…

Abstract

Purpose

This paper aims to propose a reasonable method to evaluate uncertainty of measurement of industrial robots’ orientation repeatability and solve the non-linear problem existing in its evaluation procedure.

Design/methodology/approach

Firstly, a measurement model of orientation repeatability, based on laser tracker, is established. Secondly, some factors, influencing the measurement result of orientation repeatability, are identified, and their probability distribution functions are modelled. Thirdly, based on Monte Carlo method, an uncertainty evaluation model and algorithm of measurement of industrial robot’s orientation repeatability are built. Finally, an industrial robot is taken as the research object to validate the rationality of proposed method.

Findings

Results show that the measurement model of orientation repeatability of industrial robot is non-linear, and the proposed method can reasonably and objectively estimate uncertainty of measurement of industrial robots’ orientation repeatability.

Originality/value

This paper, based on Monte Carlo method and experimental work, proposes an uncertainty evaluation method of measurement of industrial robots’ orientation repeatability which can solve the non-linear problem and provide a reasonable and objective evaluation. And the stochastic ellipsoid approach is firstly taken to model the repeatability of laser tracker. Additionally, this research is beneficial to decide whether the orientation repeatability of the industrial robot meets its requirements.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 May 2017

Chuangui Yang, Junwen Wang, Liang Mi, Xingbao Liu, Yangqiu Xia, Yilei Li, Shaoxing Ma and Qiang Teng

This paper aims to propose a four-point measurement model for directly measuring the pose (i.e. position and orientation) of industrial robot and reducing its calculating error…

Abstract

Purpose

This paper aims to propose a four-point measurement model for directly measuring the pose (i.e. position and orientation) of industrial robot and reducing its calculating error and measurement uncertainty.

Design/methodology/approach

A four-point measurement model is proposed for directly measuring poses of industrial robots. First, this model consists of a position measurement model and an orientation model gotten by the position of spherically mounted reflector (SMR). Second, an influence factor analysis, simulated by Monte Carlo simulation, is performed to investigate the influence of certain factors on the accuracy and uncertainty. Third, comparisons with the common method are carried out to verify the advantage of this model. Finally, a test is carried out for evaluating the repeatability of five poses of an industrial robot.

Findings

In this paper, results show that the proposed model is better than the three-SMRs model in measurement accuracy, measurement uncertainty and computational efficiency. Moreover, both measurement accuracy and measurement uncertainty can be improved by using the proposed influence laws of its key parameters on the proposed model.

Originality/value

The proposed model can measure poses of industrial robots directly, accurately and effectively. Additionally, influence laws of key factors on the accuracy and uncertainty of the proposed model are given to provide some guidelines for improving the performance of the proposed model.

Details

Industrial Robot: An International Journal, vol. 44 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 August 2018

Yang Chuangui, Liu Xingbao, Yue Xiaobin, Mi Liang, Wang Junwen, Xia Yangqiu, Yu Hailian and Chen Heng

This paper aims to solve the nonlinear problem in the uncertainty evaluation of the measurement of the positioning repeatability (RP) of industrial robots and provide guidance to…

Abstract

Purpose

This paper aims to solve the nonlinear problem in the uncertainty evaluation of the measurement of the positioning repeatability (RP) of industrial robots and provide guidance to restrict the uncertainty of measurement of RP (uRP).

Design/methodology/approach

Firstly, some uncertain sources existing in the measurement procedure of RP are identified. Secondly, the probability distribution function (PDF) of every source is established on the basis of its measurements. Some spatial combined normal distributions are adopted. Then, a method, based on Monte Carlo method (MCM) and established measurement model, is developed for the estimation of uRP. Thirdly, some tests are developed for the identification and validation of the selected PDFs of uncertain sources. Afterwards, the proposed method is applied for the evaluation and validation of the uRP. Finally, influence analyses of some key factors are proposed for the quantification of their relative contributions to uRP.

Findings

Results show that the proposed method can reasonably and objectively estimate the uRP of the selected industrial robot, and changes of the industrial robots’ position and the laser trackers measurement are correlated. Additionally, the uRP of the selected industrial robot can be restricted by using the results of its key factors on uRP.

Originality/value

This paper proposes the spatial combined normal distribution to model the uncertainty of the repeatability of the laser tracker and industrial robot. Meanwhile, the proposed method and influence analyses can be used in estimating and restricting the uRP and thus useful in determining whether the RP of a tested industrial robot meets its requirements.

Details

Industrial Robot: An International Journal, vol. 45 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 May 2017

Wing-hin Kam

This paper aims to analyse how both Lin’s birthplace identity and his Christian identity contributed to his fruitful public career and to ascertain which identity became the most…

Abstract

Purpose

This paper aims to analyse how both Lin’s birthplace identity and his Christian identity contributed to his fruitful public career and to ascertain which identity became the most significant.

Design/methodology/approach

Archival research is the main method used in this paper. The most important archives drawn from are the Daniel Tse Collection in the Special Collection and Archives of the Hong Kong Baptist University Library. Oral history has also been used in this paper to uncover more material that has not yet been discussed in existing scholarly works.

Findings

This paper argues that although Lin’s birthplace identity and social networks helped him to start his business career in Nam Pak Hong and develop into a leader in the local Chaozhou communities, these factors were insufficient to his becoming a respectable member of the Chinese elite in post-war Hong Kong. He became well known not because of his leading position in local Chaozhou communities or any great achievement he had obtained in business but because of his contribution to the development of Christian education. These achievements earned him a reputation as a “Christian educator”. Thus Lin’s Christian identity became more important than his birthplace identity in contributing to his successful public career.

Originality/value

This paper has value in showing how Christian influences interacted with various cultural factors in early Hong Kong. It also offers insights into Lin’s life and motivations as well as the history of the institutions he contributed to/founded. It not only furthers our understanding of the Chinese Christian business elite in early Hong Kong but also provides us with insights when further studying this group of people in other British colonies in Asia.

Details

Social Transformations in Chinese Societies, vol. 13 no. 1
Type: Research Article
ISSN: 1871-2673

Keywords

1 – 4 of 4