Search results

1 – 1 of 1
Article
Publication date: 24 August 2022

Yanfu Wang, Xin Wang and Lifei Liu

Lapping is a vital flattening process to improve the quality of processed semiconductor wafers such as single-crystal sapphire wafers. This study aims to optimise the lapping…

92

Abstract

Purpose

Lapping is a vital flattening process to improve the quality of processed semiconductor wafers such as single-crystal sapphire wafers. This study aims to optimise the lapping process of the fixed-abrasive lapping plate of sapphire wafers with good overall performance [i.e. high material removal rate (MRR), small surface roughness (Ra) of the wafers after lapping and small lapping plate wear ratio (η)].

Design/methodology/approach

The influence of process parameters such as lapping time, abrasive size, abrasive concentration, lapping pressure and lapping speed on MRR, Ra and η of lapping-processed sapphire wafers was studied, and the results were combined with experimental data to establish a regression model. The multi-evaluation index optimisation problem was transformed into a single-index optimisation problem via an entropy method and the grey relational analysis (GRA) to comprehensively evaluate the performance of each parameter.

Findings

The results revealed that lapping time, abrasive size, abrasive concentration, lapping pressure and lapping speed had different influence degrees on MRR, Ra and η. Among these parameters, lapping time, lapping speed and abrasive size had the most significant effects on MRR, Ra and η, and the established regression equations predicted the response values of MRR, Ra and η to be 99.56%, 99.51% and 93.88% and the relative errors between the predicted and actual measured values were <12%, respectively. With increased lapping time, MRR, Ra and η gradually decreased. With increased abrasive size, MRR increased nearly linearly, whereas Ra and η initially decreased but subsequently increased. With an increase in abrasive concentration, MRR, Ra and η initially increased but subsequently decreased. With increased lapping pressure, MRR and η increased nearly linearly and continuously, whereas Ra decreased nearly linearly and continuously. With increased lapping speed, Ra initially decreased sharply but subsequently increased gradually, whereas η initially increased sharply but subsequently decreased gradually; however, the change in MRR was not significant. Comparing the optimised results obtained via the analysis of influence law, the parameters optimised via the entropy method and GRA were used to obtain sapphire wafers lapping with an MRR of 4.26 µm/min, Ra of 0.141 µm and η of 25.08, and the lapping effect was significantly improved.

Originality/value

Therefore, GRA can provide new ideas for ultra-precision processing and process optimisation of semiconductor materials such as sapphire wafers.

Details

Microelectronics International, vol. 39 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 1 of 1