Search results

1 – 2 of 2
Open Access
Article
Publication date: 4 July 2022

Kai Zhuang, Jieru Xiao and Xiaolong Yang

The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink…

Abstract

Purpose

The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink jet printing. Droplet bouncing on the nonwetting surfaces is a special phenomenon in the impact process which has attracted lots of attention.

Design/methodology/approach

In this work, the authors fabricated two kinds of representative nonwetting surfaces including superhydrophobic surfaces (SHS) and a slippery liquid-infused porous surface (SLIPS) with advanced UV laser processing.

Findings

The droplet bouncing behavior on the two kinds of nonwetting surfaces were compared in the experiments. The results indicate that the increasing Weber number enlarges the maximum droplet spreading diameter and raises the droplet bounce height but has no effect on contact time.

Originality/value

In addition, the authors find that the topological SHS and SLIPS with the laser-processed microwedge groove array produce asymmetric droplet bouncing with opposite offset direction. Microdroplets can be continuously transported without any additional driving force on such a topological SLIPS. The promising method for manipulating droplets has potential applications for the droplet-based microfluidic platforms.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Access

Only Open Access

Year

Content type

1 – 2 of 2