Search results

1 – 2 of 2
Article
Publication date: 30 April 2024

Xiaohan Kong, Shuli Yin, Yunyi Gong and Hajime Igarashi

The prolonged training time of the neural network (NN) has sparked considerable debate regarding their application in the field of optimization. The purpose of this paper is to…

Abstract

Purpose

The prolonged training time of the neural network (NN) has sparked considerable debate regarding their application in the field of optimization. The purpose of this paper is to explore the beneficial assistance of NN-based alternative models in inductance design, with a particular focus on multi-objective optimization and uncertainty analysis processes.

Design/methodology/approach

Under Gaussian-distributed manufacturing errors, this study predicts error intervals for Pareto points and select robust solutions with minimal error margins. Furthermore, this study establishes correlations between manufacturing errors and inductance value discrepancies, offering a practical means of determining permissible manufacturing errors tailored to varying accuracy requirements.

Findings

The NN-assisted methods are demonstrated to offer a substantial time advantage in multi-objective optimization compared to conventional approaches, particularly in scenarios where the trained NN is repeatedly used. Also, NN models allow for extensive data-driven uncertainty quantification, which is challenging for traditional methods.

Originality/value

Three objectives including saturation current are considered in the multi-optimization, and the time advantages of the NN are thoroughly discussed by comparing scenarios involving single optimization, multiple optimizations, bi-objective optimization and tri-objective optimization. This study proposes direct error interval prediction on the Pareto front, using extensive data to predict the response of the Pareto front to random errors following a Gaussian distribution. This approach circumvents the compromises inherent in constrained robust optimization for inductance design and allows for a direct assessment of robustness that can be applied to account for manufacturing errors with complex distributions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 April 2024

Shiqing Wu, Jiahai Wang, Haibin Jiang and Weiye Xue

The purpose of this study is to explore a new assembly process planning and execution mode to realize rapid response, reduce the labor intensity of assembly workers and improve…

Abstract

Purpose

The purpose of this study is to explore a new assembly process planning and execution mode to realize rapid response, reduce the labor intensity of assembly workers and improve the assembly efficiency and quality.

Design/methodology/approach

Based on the related concepts of digital twin, this paper studies the product assembly planning in digital space, the process execution in physical space and the interaction between digital space and physical space. The assembly process planning is simulated and verified in the digital space to generate three-dimensional visual assembly process specification documents, the implementation of the assembly process specification documents in the physical space is monitored and feed back to revise the assembly process and improve the assembly quality.

Findings

Digital twin technology enhances the quality and efficiency of assembly process planning and execution system.

Originality/value

It provides a new perspective for assembly process planning and execution, the architecture, connections and data acquisition approaches of the digital twin-driven framework are proposed in this paper, which is of important theoretical values. What is more, a smart assembly workbench is developed, the specific image classification algorithms are presented in detail too, which is of some industrial application values.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Access

Year

Last week (2)

Content type

Earlycite article (2)
1 – 2 of 2