Search results

1 – 10 of over 4000
Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6067

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1990

Y.C. Liu, H.A. ElMaraghy and K.F. Zhang

A knowledge‐based system for forming quadrilateral finite elements, XFORMQ, was developed at the Centre of Flexible Manufacturing Research and Development of McMaster University…

Abstract

A knowledge‐based system for forming quadrilateral finite elements, XFORMQ, was developed at the Centre of Flexible Manufacturing Research and Development of McMaster University, Canada. It automatically forms quadrilateral elements of good quality in conjunction with existing triangular mesh generators. XFORMQ can model geometries as complicated as those handled by triangular mesh generators. It allows for pre‐specified element sizes and rapid transition of element density. The concepts of ‘layer’ and ‘polygon patterns’, which considerably simplify the mesh generation rules and ensure the quality of formed elements, are introduced. Several test cases with different degrees of difficulties were used to evaluate XFORMQ's capabilities with satisfactory results. XFORMQ has the potential of generating meshes arising from the adaptive finite element analysis with quadrilateral elements.

Details

Engineering Computations, vol. 7 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 March 1984

H. Stolarski, T. Belytschko, N. Carpenter and J.M. Kennedy

A simple triangular shell element which incorporates the effects of coupling between membrane and flexural behaviour and avoids membrane locking is described. The element uses a…

Abstract

A simple triangular shell element which incorporates the effects of coupling between membrane and flexural behaviour and avoids membrane locking is described. The element uses a discrete Kirchhoff bending formulation and a constant strain membrane element. For the purpose of permitting inextensional modes and thus avoiding membrane locking, a decomposition technique, which can also be viewed as a strain projection method, is used. The method is illustrated first for a beam element and then for a triangular shell element. Results are presented for a variety of linear static problems to illustrate its accuracy and some highly non‐linear problems to indicate its applicability to collapse analysis.

Details

Engineering Computations, vol. 1 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 1987

Ghazi Abu‐Farsakh

A new triangular shell finite element ‘TNTE.1’ (Ten Node Triangular Element, Model 1) is presented. The formulation is based on Sanders' theory which involves the inclusion of the…

Abstract

A new triangular shell finite element ‘TNTE.1’ (Ten Node Triangular Element, Model 1) is presented. The formulation is based on Sanders' theory which involves the inclusion of the normal rotation Φn in the bending‐strain relations only. The element displacement functions are complete cubic polynomials for inplane displacements u and v. For out‐of‐plane displacement w, three new singular rational shape functions were added at the element corners. Thus a conforming triangular element with twenty seven degrees‐of‐freedom is obtained after eliminating the internal displacements by static condensation. The formulation of this element is new in that an integration technique is developed and applied to the element stiffness matrix and load vector. This technique is based on performing all the necessary integrations externally (i.e. outside the main computer program) and then modifying the formulation of the element matrices to account for this change. Hence, such a method allows the inclusion of higher‐order integration rules without any loss of economy, due to computer time, in the main program. Results using this element showed good agreement with other finite element and closed form solutions.

Details

Engineering Computations, vol. 4 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 11 April 2020

Mohammad Rezaiee-Pajand, Nima Gharaei-Moghaddam and Mohammadreza Ramezani

This paper aims to propose a new robust membrane finite element for the analysis of plane problems. The suggested element has triangular geometry. Four nodes and 11 degrees of…

Abstract

Purpose

This paper aims to propose a new robust membrane finite element for the analysis of plane problems. The suggested element has triangular geometry. Four nodes and 11 degrees of freedom (DOF) are considered for the element. Each of the three vertex nodes has three DOF, two displacements and one drilling. The fourth node that is located inside the element has only two translational DOF.

Design/methodology/approach

The suggested formulation is based on the assumed strain method and satisfies both compatibility and equilibrium conditions within each element. This establishment results in higher insensitivity to the mesh distortion. Enforcement of the equilibrium condition to the assumed strain field leads to considerably high accuracy of the developed formulation.

Findings

To show the merits of the suggested plane element, its different properties, including insensitivity to mesh distortion, particularly under transverse shear forces, immunities to the various locking phenomena and convergence of the element are studied. The obtained results demonstrate the superiority of the suggested element compared with many of the available robust membrane elements.

Originality/value

According to the attained results, the proposed element performs better than the well-known displacement-based elements such as linear strain triangular element, Q4 and Q8 and even is comparable with robust modified membrane elements.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 February 2022

Ratikanta Sahoo

This paper aims to propose a cylindrical conformal wideband antenna with increased directive behaviour using integrated parasitic triangular-shaped elements for WiMAX application.

Abstract

Purpose

This paper aims to propose a cylindrical conformal wideband antenna with increased directive behaviour using integrated parasitic triangular-shaped elements for WiMAX application.

Design/methodology/approach

The proposed antenna is a wideband directional cylindrical conformal antenna consisting of three fork-shaped dipole elements incorporated with parasitic triangular-shaped reflecting components increases the gain of reference conformal antenna. The novel parasitic elements with triangular shapes are designed on the radiating patch as well as the ground plane side. The parasitic triangular elements enable the antenna to enhance the gain along the end-fire direction.

Findings

The proposed antenna has a 20.2% impedance bandwidth ranging from 3.1 to 3.8 GHz. The half power beam-width (HPBW) of the reference antenna in the H-plane is 122.9° and falls to 99.1° after integrating with parasitic elements at 3.3 GHz, whereas it falls from 56.7° to 54.7° in the E-plane. However, at 3.5 GHz, the reference antenna’s HPBW is at 116.8°, which decreases to 92.4° in the H-plane, whereas it reduces from 57.9 to 53.4° in the E-plane. The proposed antenna has a lower HPBW than reference antennas and achieved a gain enhancement of 1.2 dBi, indicating that the pattern becomes more directed.

Originality/value

In the proposed work, the directive behaviour of cylindrical conformal antenna structure with a 30 mm radius of curvature is improved using parasitic reflective elements. The fabricated antennas’ experimental findings are an excellent contender for wireless point-to-point WiMAX applications because it features a wideband, directional properties, and strong gain over the whole operational frequency range of 3.1–3.8 GHz.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 February 1999

O.M. Heeres and R. de Borst

An important characteristic of many soil models is a volume change during plastic flow. In computations, this plastic volume change is expressed via a kinematic constraint on the…

Abstract

An important characteristic of many soil models is a volume change during plastic flow. In computations, this plastic volume change is expressed via a kinematic constraint on the possible deformations. Due to this constraint the plane‐strain three‐noded triangular element exhibits locking when plastic deformations occur, under dilatant, contractant and isochoric conditions. It is demonstrated that using the method of enhanced assumed strains by Simol this locking cannot be remedied. For six‐noded wedges and four‐noded and five‐noded pyramids the same conclusion is obtained.

Details

Engineering Computations, vol. 16 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 March 2011

Mark D. Ainslie, Tim J. Flack, Zhiyong Hong and Tim A. Coombs

The purpose of the paper is to provide a comparison of first‐ and second‐order two dimensional finite element models for evaluating the electromagnetic properties and calculating…

Abstract

Purpose

The purpose of the paper is to provide a comparison of first‐ and second‐order two dimensional finite element models for evaluating the electromagnetic properties and calculating AC loss in high‐temperature superconductor (HTS) coated conductors.

Design/methodology/approach

The models are based on the two‐dimensional (2D) H formulation, which is based on directly solving the magnetic field components in 2D. Two models – one with a minimum symmetric triangular mesh and one with a single‐layer square mesh – are compared based on different types of mesh elements: first‐order (Lagrange – linear) and second‐order (Lagrange – quadratic) mesh elements, and edge elements.

Findings

The number and type of mesh elements are critically important to obtain the minimum level of discretization to achieve accurate results. Artificially increasing the superconductor layer and choosing a minimum symmetric mesh with triangular edge elements can provide a sufficiently accurate estimation of the hysteretic superconductor loss for a transport current.

Originality/value

This paper describes how the selection of mesh type and number of elements affects the computation speed and convergence properties of the finite element model using two different types of meshing. It offers an insight into the different factors modelers must consider when modeling HTS coated conductors and the methods that may be applied when extending the model to complex device geometries, such as wound coils.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2018

I. St Doltsinis

An intended numerical analysis of solids and structures by spring cell substitutes in place of finite elements has occasioned considerable research on the subject. This paper aims…

Abstract

Purpose

An intended numerical analysis of solids and structures by spring cell substitutes in place of finite elements has occasioned considerable research on the subject. This paper aims to expose two alternative concepts evolving out of Argyris’ natural approach to the simplex triangular element. One is based on an approximation of the element flexibility and the other approximates the stiffness with coincidence at the ideal conditions of complete substitution.

Design/methodology/approach

Characteristic of the natural formalism is the homogeneous definition of strain and stress along the sides of the triangular element. The associated elastic compliance offers itself for the transition to the spring cell. The diagonal entities are interpreted immediately as springs along the element sides, and the off-diagonal terms account for the completeness of the substitution. In addition to the flexibility concept, the spring cell is deduced alternatively from the element’s natural stiffness. The difference in the flexibility result lies in the calculatory cross-sectional areas of the elastic bar members.

Findings

From the natural point of view, the spring cell evolves out of the continuum element to the desired degree of substitution. The simplest configuration of pin-joined bars discards all geometrical and physical cross effects. The approach is attractive because of its transparent simplicity.

Research limitations/implications

The difference between the stiffness and the flexibility approach to spring cells is demonstrated for triangular elements that suit the problems lying in plane stress or plane strain. More general states of stress and strain involve spring cell counterparts of the tetrahedral finite element.

Practical implications

Apart from plane geometries, triangular spring cells are assembled to lattice models of space structures, such as membrane shells and similar.

Originality/value

The natural formalism of simplex finite elements is used for deducing spring cells in two variants and exploring their properties. This is a novel approach to spring cells and an original employment of the natural concept.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 August 2024

J. Sasikala, G. Shylaja, Naidu V. Kesavulu, B. Venkatesh and S.M. Mallikarjunaiah

A finite element computational methodology on a curved boundary using an efficient subparametric point transformation is presented. The proposed collocation method uses one-side…

Abstract

Purpose

A finite element computational methodology on a curved boundary using an efficient subparametric point transformation is presented. The proposed collocation method uses one-side curved and two-side straight triangular elements to derive exact subparametric shape functions.

Design/methodology/approach

Our proposed method builds upon the domain discretization into linear, quadratic and cubic-order elements using subparametric spaces and such a discretization greatly reduces the computational complexity. A unique subparametric transformation for each triangle is derived from the unique parabolic arcs via a one-of-a-kind relationship between the nodal points.

Findings

The novel transformation derived in this paper is shown to increase the accuracy of the finite element approximation of the boundary value problem (BVP). Our overall strategy is shown to perform well for the BVP considered in this work. The accuracy of the finite element approximate solution increases with higher-order parabolic arcs.

Originality/value

The proposed collocation method uses one-side curved and two-side straight triangular elements to derive exact subparametric shape functions.

1 – 10 of over 4000