Search results

1 – 10 of 422
Article
Publication date: 3 October 2023

Zonglin Lei, Zunge Li and Yangyi Xiao

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Abstract

Purpose

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Design/methodology/approach

For this purpose, the mechanical properties of a-C:H, ta-C and AlCrSiN coatings are characterized by nano-indentation and scratch tests. The friction and wear behaviors of these three coatings are evaluated by ball-on-disc tribological experiments under dry contact conditions.

Findings

The results show that the a-C:H coating has the highest coating-substrate adhesion strength (495 mN) and the smoothest surface (Ra is about 0.045 µm) compared with the other two coatings. The AlCrSiN coating shows the highest mean coefficient of friction (COF), whereas the ta-C coating exhibits the lowest one (steady at about 0.16). The carbon-based coatings possess excellent self-lubricating properties compared with nitride ceramic ones, which effectively reduce the COF by about 64%. The major failure mode of carbon-based coatings in dry contact is slight abrasive wear. The damage of AlCrSiN coating is mainly adhesive wear and abrasive wear.

Originality/value

It is suggested that the carbon-based film can effectively improve the friction-reducing and wear resistance performance of the gear steel surface, which has a promising application prospect in the mechanical transmission field.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0129/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 January 2024

Talwinder Singh

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly…

Abstract

Purpose

The purpose of this paper, an experimental study, is to investigate the optimal machining parameters for turning of nickel-based superalloy Inconel 718 under eco-friendly nanofluid minimum quantity lubrication (NMQL) environment to minimize cutting tool flank wear (Vb) and machined surface roughness (Ra).

Design/methodology/approach

The central composite rotatable design approach under response surface methodology (RSM) is adopted to prepare a design of experiments plan for conducting turning experiments.

Findings

The optimum value of input turning parameters: cutting speed (A), feed rate (B) and depth of cut (C) is found as 79.88 m/min, 0.1 mm/rev and 0.2 mm, respectively, with optimal output response parameters: Vb = 138.633 µm and Ra = 0.462 µm at the desirability level of 0.766. Feed rate: B and cutting speed: A2 are the leading model variables affecting Vb, with a percentage contribution rate of 12.06% and 43.69%, respectively, while cutting speed: A and feed rate: B are the significant factors for Ra, having a percentage contribution of 38.25% and 18.03%, respectively. Results of validation experiments confirm that the error between RSM predicted and experimental observed values for Vb and Ra is 3.28% and 3.75%, respectively, which is less than 5%, thus validating that the formed RSM models have a high degree of conformity with the obtained experimental results.

Practical implications

The outcomes of this research can be used as a reference machining database for various metal cutting industries to establish eco-friendly NMQL practices during the turning of superalloy Inconel 718 to enhance cutting tool performance and machined surface integrity.

Originality/value

No study has been communicated till now on the turning of Inconel 718 under NMQL conditions using olive oil blended with multi-walled carbon nanotubes-based nanofluid.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0317/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 October 2022

Yi Tan, Wenyu Xu, Keyu Chen, Chunyan Deng and Peng Wang

At present, teaching methods based on 2D drawings are still commonly used for educating students on the location of steel reinforcement bars in concrete. However, traditional…

Abstract

Purpose

At present, teaching methods based on 2D drawings are still commonly used for educating students on the location of steel reinforcement bars in concrete. However, traditional teaching methods have limitations as students can find it difficult to understand 2D drawings. This study aims to develop an interactive and collaborative augmented reality environment (ICARE) using augmented reality (AR) technology to improve students' engagement in learning.

Design/methodology/approach

This study develops an ICARE prototype, which is organized into two stages: (1) The augmented teaching environment comprising of models and interactive components; (2) The AR collaborative application which uses Photon Unity Networking (PUN) plugin and Azure spatial anchors cloud service. The AR-based teaching environment runs with Universal Windows Platform (UWP) to enable development in the HoloLens 2 through Microsoft Visual Studio.

Findings

An experimental study was conducted, where 60 students were divided into three groups employing Drawings-based, building information modeling (BIM)-based and AR-based methods for teaching. After the test, the three groups of students were requested to complete a questionnaire. According to the analysis of the experimental results, the ICARE can improve students' comprehension, memory of learned materials and their ability to read and understand steel reinforcement drawings improving the quality of teaching, especially interactivity and engagement.

Originality/value

As illustrated in the experiments, the developed ICARE has outstanding performance over conventional approaches in civil engineering courses that can improve students' comprehension and memory of knowledge and their ability to read and understand steel bar drawings. This study provides empirical evidence that AR is a promising technology that can be integrated with traditional classroom instruction and can improve students' comprehension and memory of knowledge and their ability to read and understand steel bar drawings.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 3 August 2020

Djordje Cica, Branislav Sredanovic, Sasa Tesic and Davorin Kramar

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with…

2174

Abstract

Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Details

Applied Computing and Informatics, vol. 20 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 19 October 2023

Steffen Schrock, Stefan Junk and Albert Albers

This study aims to investigate a systematic approach to the production and use of additively manufactured injection mould inserts in product development (PD) processes. For this…

Abstract

Purpose

This study aims to investigate a systematic approach to the production and use of additively manufactured injection mould inserts in product development (PD) processes. For this purpose, an evaluation of the additive tooling design method (ATDM) is performed.

Design/methodology/approach

The evaluation of the ATDM is conducted within student workshops, where students develop products and validate them using AT-prototypes. The evaluation process includes the analysis of work results as well as the use of questionnaires and participant observation.

Findings

This study shows that the ATDM can be successfully used to assist in producing and using AT mould inserts to produce valid AT prototypes. As a reference for the implementation of AT in industrial PD, extracts from the work of the student project groups and suitable process parameters for prototype production are presented.

Originality/value

This paper presents the application and evaluation of a method to support AT in PD that has not yet been scientifically evaluated.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 December 2023

Ferhat Ceritbinmez, Yusuf Kanca, Ahmet Tuna and Erdoğan Kanca

FeNi36 (Invar-36) alloy is widely used in the fabrication of molding tools in aerospace industries but there remains a need to improve its wear and friction performance due to its…

Abstract

Purpose

FeNi36 (Invar-36) alloy is widely used in the fabrication of molding tools in aerospace industries but there remains a need to improve its wear and friction performance due to its relatively low hardness. The formation of a heat affected zone (HAZ) on the surface of Invar-36 cut by wire electric discharge machining (WEDM) is promising to enhance its tribological properties. This study aims to investigate the tribological performance of WEDM-treated Invar-36 via a ball-on-disk tribometer in dry-sliding conditions.

Design/methodology/approach

The untreated and WEDM-treated Invar-36 surfaces were reciprocated against an alumina ball at a sliding velocity of 40 mm/s, a stroke length of 10 mm and a sliding duration of 125 min under loads of 5, 10 and 20 N. The worn surfaces were characterized using a 2D profilometry and a scanning electron microscope equipped with energy-dispersive spectroscopy.

Findings

The results showed that the WEDM-treated surface had a superior friction coefficient and wear resistance in comparison to the untreated surface, due to the grown HAZ. There was found to be a 9.3%–11.4% decrease in the friction coefficient and a 47%–57% reduction in the wear volume after the WEDM treatment. Both the untreated and WEDM-treated Invar-36 surfaces found abrasion and plastic deformation as the dominant wear mechanisms.

Originality/value

Previous works have not focused on the tribological performance of the WEDM-treated Invar-36 extensively used for molding tools in aerospace industries. Our findings provide compelling evidence that the WEDM treatment improved the wear and friction performance of Invar-36 alloy because of the grown HAZ.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 November 2022

Md Doulotuzzaman Xames, Fariha Kabir Torsha and Ferdous Sarwar

The purpose of this paper is to predict the machining performance of electrical discharge machining of Ti-13Nb-13Zr (TNZ) alloy, a promising biomedical alloy, using artificial…

Abstract

Purpose

The purpose of this paper is to predict the machining performance of electrical discharge machining of Ti-13Nb-13Zr (TNZ) alloy, a promising biomedical alloy, using artificial neural networks (ANN) models.

Design/methodology/approach

In the research, three major performance characteristics, i.e. the material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR), were chosen for the study. The input parameters for machining were the voltage, current, pulse-on time and pulse-off time. For the ANN model, a two-layer feedforward network with sigmoid hidden neurons and linear output neurons were chosen. Levenberg–Marquardt backpropagation algorithm was used to train the neural networks.

Findings

The optimal ANN structure comprises four neurons in input layer, ten neurons in hidden layer and one neuron in the output layer (4–10-1). In predicting MRR, the 60–20-20 data split provides the lowest MSE (0.0021179) and highest R-value for training (0.99976). On the contrary, the 70–15-15 data split results in the best performance in predicting both TWR and SR. The model achieves the lowest MSE and highest R-value for training in predicting TWR as 1.17E-06 and 0.84488, respectively. Increasing the number of hidden neurons of the network further deteriorates the performance. In predicting SR, the authors find the best MSE and R-value as 0.86748 and 0.94024, respectively.

Originality/value

This is a novel approach in performance prediction of electrical discharge machining in terms of new workpiece material (TNZ alloys).

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 5 August 2020

Francesco Pomponi, Robert Crawford, André Stephan, Jim Hart and Bernardino D'Amico

The construction and operation of buildings is a major contributor to global energy demand, greenhouse gases emissions, resource depletion, waste generation, and associated…

Abstract

The construction and operation of buildings is a major contributor to global energy demand, greenhouse gases emissions, resource depletion, waste generation, and associated environmental effects, such as climate change, pollution and habitat destruction. Despite its wide relevance, research on building-related environmental effects often fails to achieve global visibility and attention, particularly in premiere interdisciplinary journals – thus representing a major gap in the research these journals offer. In this article we review and reflect on the factors that are likely causing this lack of visibility for such a prominent research topic and emphasise the need to reconcile the construction and operational phases into the physical unity of a building, to contribute to the global environmental discourse using a lifecycle-based approach. This article also aims to act as a call for action and to raise awareness of this important gap. The evidence contained in the article can support institutional policies to improve the status quo and provide a practical help to researchers in the field to bring their work to wide interdisciplinary audiences.

Details

Emerald Open Research, vol. 1 no. 5
Type: Research Article
ISSN: 2631-3952

Keywords

Article
Publication date: 3 October 2023

Philip T. Roundy and Mark A. Bayer

Research at the interface of marketing and entrepreneurship has emphasized digital entrepreneurship and how entrepreneurs pursue business opportunities centered on new…

Abstract

Purpose

Research at the interface of marketing and entrepreneurship has emphasized digital entrepreneurship and how entrepreneurs pursue business opportunities centered on new technologies. However, a different type of entrepreneurship focused on opportunities involving consumers’ (re)adoption of displaced analog technologies when digital alternatives are dominant – analog entrepreneurship – is a trend and counter phenomenon to digital entrepreneurship that is receiving intense practitioner interest but limited scholarly attention. The purpose of this article is to present a theoretical framework that explains the role of analog entrepreneurship in technology revitalization.

Design/methodology/approach

In this conceptual paper, the authors use the microfoundations perspective to develop a multilevel theory of analog entrepreneurship. The authors define and delineate the “analog entrepreneurship” concept and formulate a midrange theory explaining how entrepreneurs influence the reemergence of analog technologies.

Findings

The theory’s main insight is that the renewal of analog technologies is not confined to consumers. Entrepreneurs are creating businesses that stimulate demand for analog technologies. As a result of entrepreneurs’ activities, legacy analog technologies do not fade into nonexistence in the face of rival digital technologies.

Originality/value

The theory of analog entrepreneurship contributes to research at the intersection of entrepreneurship and marketing by expanding its focus to consider the entrepreneurs who revitalize displaced analog technologies when digital alternatives are dominant. The authors provide insight into the potential trajectories of technologies after their initial displacement and the role entrepreneurs play in shaping the late stages of technology lifecycles. The theory draws attention to an underexplored phenomenon made increasingly prevalent by recent technological disruptions and suggests an agenda for studying how entrepreneurs renew analog technologies.

Details

Journal of Research in Marketing and Entrepreneurship, vol. 26 no. 1
Type: Research Article
ISSN: 1471-5201

Keywords

Article
Publication date: 8 November 2023

Yang Zhou, Zhong Li, Yuhe Huang, Xiaohan Chen, Xinggang Li, Xiaogang Hu and Qiang Zhu

Laser powder bed fusion (LPBF) in-situ alloying is a recently developed technology that provides a facile approach to optimizing the microstructural and compositional…

Abstract

Purpose

Laser powder bed fusion (LPBF) in-situ alloying is a recently developed technology that provides a facile approach to optimizing the microstructural and compositional characteristics of the components for high performance goals. However, the complex mass and heat transfer behavior of the molten pool results in an inhomogeneous composition distribution within the samples fabricated by LPBF in-situ alloying. The study aims to investigate the heat and mass transfer behavior of an in-situ alloyed molten pool by developing a three-dimensional transient thermal-flow model that couples the metallurgical behavior of the alloy, thereby revealing the formation mechanism of composition inhomogeneity.

Design/methodology/approach

A multispecies multiphase computational fluid dynamic model was developed with thermodynamic factors derived from the phase diagram of the selected alloy system. The characteristics of the Al/Cu powder bed in-situ alloying process were investigated as a benchmark. The metallurgical behaviors including powder melting, thermal-flow, element transfer and solidification were investigated.

Findings

The Peclet number indicates that the mass transfer in the molten pool is dominated by convection. The large variation in material properties and temperature results in the presence of partially melted Cu-powder and pre-solidified particles in the molten pool, which further hinder the convection mixing. The study of simulation and experiment indicates that optimizing the laser energy input is beneficial for element homogenization. The effective time and driving force of the convection stirring can be improved by increasing the volume energy density.

Originality/value

This study provides an in-depth understanding of the formation mechanism of composition inhomogeneity in alloy fabricated by LPBF in-situ alloying.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last 6 months (422)

Content type

Article (422)
1 – 10 of 422