Search results

1 – 3 of 3
Article
Publication date: 8 January 2024

Indranil Ghosh, Rabin K. Jana and Dinesh K. Sharma

Owing to highly volatile and chaotic external events, predicting future movements of cryptocurrencies is a challenging task. This paper advances a granular hybrid predictive…

Abstract

Purpose

Owing to highly volatile and chaotic external events, predicting future movements of cryptocurrencies is a challenging task. This paper advances a granular hybrid predictive modeling framework for predicting the future figures of Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), Stellar (XLM) and Tether (USDT) during normal and pandemic regimes.

Design/methodology/approach

Initially, the major temporal characteristics of the price series are examined. In the second stage, ensemble empirical mode decomposition (EEMD) and maximal overlap discrete wavelet transformation (MODWT) are used to decompose the original time series into two distinct sets of granular subseries. In the third stage, long- and short-term memory network (LSTM) and extreme gradient boosting (XGB) are applied to the decomposed subseries to estimate the initial forecasts. Lastly, sequential quadratic programming (SQP) is used to fetch the forecast by combining the initial forecasts.

Findings

Rigorous performance assessment and the outcome of the Diebold-Mariano’s pairwise statistical test demonstrate the efficacy of the suggested predictive framework. The framework yields commendable predictive performance during the COVID-19 pandemic timeline explicitly as well. Future trends of BTC and ETH are found to be relatively easier to predict, while USDT is relatively difficult to predict.

Originality/value

The robustness of the proposed framework can be leveraged for practical trading and managing investment in crypto market. Empirical properties of the temporal dynamics of chosen cryptocurrencies provide deeper insights.

Details

China Finance Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1398

Keywords

Article
Publication date: 20 March 2023

Esra Dobrucali, Emel Sadikoglu, Sevilay Demirkesen, Chengyi Zhang, Algan Tezel and Isik Ates Kiral

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and…

Abstract

Purpose

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and safety leads to enhanced safety performance. Considering the benefits observed in using technology in safety, this study aims to explore digital technologies' use and potential benefits in construction health and safety.

Design/methodology/approach

An extensive bibliometrics analysis was conducted to reveal which technologies are at the forefront of others and how these technologies are used in safety operations. The study used two different databases, Web of Science (WoS) and Scopus, to scan the literature in a systemic way.

Findings

The systemic analysis of several studies showed that the digital technologies use in construction are still a niche theme and need more assessment. The study provided that sensors and wireless technology are of utmost importance in terms of construction safety. Moreover, the study revealed that artificial intelligence, machine learning, building information modeling (BIM), sensors and wireless technologies are trending technologies compared to unmanned aerial vehicles, serious games and the Internet of things. On the other hand, the study provided that the technologies are even more effective with integrated use like in the case of BIM and sensors or unmanned aerial vehicles. It was observed that the use of these technologies varies with respect to studies conducted in different countries. The study further revealed that the studies conducted on this topic are mostly published in some selected journals and international collaboration efforts in terms of researching the topic have been observed.

Originality/value

This study provides an extensive analysis of WoS and Scopus databases and an in-depth review of the use of digital technologies in construction safety. The review consists of the most recent studies showing the benefits of using such technologies and showing the usage on a systemic level from which both scientists and practitioners can benefit to devise new strategies in technology usage.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 February 2023

Sandra Matarneh, Faris Elghaish, Amani Al-Ghraibah, Essam Abdellatef and David John Edwards

Incipient detection of pavement deterioration (such as crack identification) is critical to optimizing road maintenance because it enables preventative steps to be implemented to…

Abstract

Purpose

Incipient detection of pavement deterioration (such as crack identification) is critical to optimizing road maintenance because it enables preventative steps to be implemented to mitigate damage and possible failure. Traditional visual inspection has been largely superseded by semi-automatic/automatic procedures given significant advancements in image processing. Therefore, there is a need to develop automated tools to detect and classify cracks.

Design/methodology/approach

The literature review is employed to evaluate existing attempts to use Hough transform algorithm and highlight issues that should be improved. Then, developing a simple low-cost crack detection method based on the Hough transform algorithm for pavement crack detection and classification.

Findings

Analysis results reveal that model accuracy reaches 92.14% for vertical cracks, 93.03% for diagonal cracks and 95.61% for horizontal cracks. The time lapse for detecting the crack type for one image is circa 0.98 s for vertical cracks, 0.79 s for horizontal cracks and 0.83 s for diagonal cracks. Ensuing discourse serves to illustrate the inherent potential of a simple low-cost image processing method in automated pavement crack detection. Moreover, this method provides direct guidance for long-term pavement optimal maintenance decisions.

Research limitations/implications

The outcome of this research can help highway agencies to detect and classify cracks accurately for a very long highway without a need for manual inspection, which can significantly minimize cost.

Originality/value

Hough transform algorithm was tested in terms of detect and classify a large dataset of highway images, and the accuracy reaches 92.14%, which can be considered as a very accurate percentage regarding automated cracks and distresses classification.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 3 of 3