Search results

1 – 10 of 26
Content available
Article
Publication date: 3 February 2012

435

Abstract

Details

Circuit World, vol. 38 no. 1
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 3 February 2012

374

Abstract

Details

Soldering & Surface Mount Technology, vol. 24 no. 1
Type: Research Article
ISSN: 0954-0911

Open Access
Article
Publication date: 16 March 2020

Slawomir Koziel and Adrian Bekasiewicz

The purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated.

4170

Abstract

Purpose

The purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated.

Design/methodology/approach

The usefulness of pre-existing designs for rapid design of antennas is investigated. The proposed approach exploits the database existing antenna base designs to determine a good starting point for structure optimization and its response sensitivities. The considered method is suitable for handling computationally expensive models, which are evaluated using full-wave electromagnetic (EM) simulations. Numerical case studies are provided demonstrating the feasibility of the framework for the design of real-world structures.

Findings

The use of pre-existing designs enables rapid identification of a good starting point for antenna optimization and speeds-up estimation of the structure response sensitivities. The base designs can be arranged into subsets (simplexes) in the objective space and used to represent the target vector, i.e. the starting point for structure design. The base closest base point w.r.t. the initial design can be used to initialize Jacobian for local optimization. Moreover, local optimization costs can be reduced through the use of Broyden formula for Jacobian updates in consecutive iterations.

Research limitations/implications

The study investigates the possibility of reusing pre-existing designs for the acceleration of antenna optimization. The proposed technique enables the identification of a good starting point and reduces the number of expensive EM simulations required to obtain the final design.

Originality/value

The proposed design framework proved to be useful for the identification of good initial design and rapid optimization of modern antennas. Identification of the starting point for the design of such structures is extremely challenging when using conventional methods involving parametric studies or repetitive local optimizations. The presented methodology proved to be a useful design and geometry scaling tool when previously obtained designs are available for the same antenna structure.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

3105

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 3 May 2021

Habeeba Khan, Sayyed Arif Ali, Mohd Wajid and Muhammad Shah Alam

In this work, a microstrip antenna array for wireless power transfer (WPT) application is reported. The proposed 4 × 4 antenna array operating at 16 GHz is designed using a…

2778

Abstract

Purpose

In this work, a microstrip antenna array for wireless power transfer (WPT) application is reported. The proposed 4 × 4 antenna array operating at 16 GHz is designed using a flexible Kapton polyimide substrate for a far-field charging unit (FFCU).

Design/methodology/approach

The proposed antenna is designed using the transmission line model on a flexible Kapton polyimide substrate. The finite element method (FEM) is used to perform the full-wave electromagnetic analysis of the proposed design.

Findings

The antenna offers −10 dB bandwidth of 240 MHz with beam width and broadside gain found to be 29.4° and 16.38 dB, respectively. Also, a very low cross-polarization level of −34.23 dB is achieved with a radiation efficiency of 36.67%. The array is capable of scanning −15° to +15° in both the elevation and azimuth planes.

Originality/value

The radiation characteristics achieved suggest that the flexible substrate antenna is suitable for wireless charging purposes.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 28 August 2021

Slawomir Koziel and Anna Pietrenko-Dabrowska

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three…

Abstract

Purpose

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three real-world antenna structures: narrow-band, dual-band and wideband, optimized under various design scenarios.

Design/methodology/approach

The keystone of the proposed approach is to reuse designs pre-optimized for various sets of performance specifications and to encode them into metamodels that render good initial designs, as well as an initial estimate of the antenna response sensitivities. Subsequent design refinement is realized using an iterative prediction-correction loop accommodating the discrepancies between the actual and target design specifications.

Findings

The presented framework is capable of yielding optimized antenna designs at the cost of just a few full-wave electromagnetic simulations. The practical importance of the iterative correction procedure has been corroborated by benchmarking against gradient-only refinement. It has been found that the incorporation of problem-specific knowledge into the optimization framework greatly facilitates parameter adjustment and improves its reliability.

Research limitations/implications

The proposed approach can be a viable tool for antenna optimization whenever a certain number of previously obtained designs are available or the designer finds the initial effort of their gathering justifiable by intended re-use of the procedure. The future work will incorporate response features technology for improving the accuracy of the initial approximation of antenna response sensitivities.

Originality/value

The proposed optimization framework has been proved to be a viable tool for cost-efficient and reliable antenna optimization. To the knowledge, this approach to antenna optimization goes beyond the capabilities of available methods, especially in terms of efficient utilization of the existing knowledge, thus enabling reliable parameter tuning over broad ranges of both operating conditions and material parameters of the structure of interest.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 21 August 2009

116

Abstract

Details

Circuit World, vol. 35 no. 3
Type: Research Article
ISSN: 0305-6120

Content available
Article
Publication date: 18 September 2009

John Ling

117

Abstract

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

Content available
Article
Publication date: 31 July 2009

290

Abstract

Details

Microelectronics International, vol. 26 no. 3
Type: Research Article
ISSN: 1356-5362

Content available
Article
Publication date: 22 June 2012

206

Abstract

Details

Soldering & Surface Mount Technology, vol. 24 no. 3
Type: Research Article
ISSN: 0954-0911

1 – 10 of 26